VIVEKANANDHA

COLLEGE OF ARTS AND SCIENCES FOR WOMEN [AUTONOMOUS]

An ISO 9001:2015 Certified Institution, Affiliated withPeriyar University, Salem, (Approved by AICTE and Re-Accredited with an 'A+' Grade by NAAC, Recognized Under 2(f) and 12(b) of UGC Act, 1956). Elayampalayam, Tiruchengode - 637 205, Namakkal Dt., Tamilnadu, INDIA.

DEPARTMENT OF CHEMISTRY

MASTER OF SCIENCE (M.Sc.)

M.Sc., CHEMISTRY REGULATIONS AND SYLLABUS

[FOR CANDIDATES ADMITTED FROM 2022-23 ONWARDS UNDER CBCS/OBE PATTERN]

SPONSORED BY ANGAMMAL EDUCATIONAL TRUST

Elayampalayam – 637 205, Tiruchengode Tk., Namakkal Dt., Tamil Nadu. Veerachipalayam - 637 303, Sankari Tk., Salem Dt., Tamil Nadu. Tel.: 04288 234670 (4 lines), Mobile: 64437 34670, Fax: 04288 234894 Website: <u>www.vivekanandha.ac.in</u>email: <u>vivekaadmission@gmail.com</u>

About the College

Vivekanandha College of Arts and Sciences for Women (Autonomous) was established and hailed into Women's Educational Service in the Year 1995. Angammal Educational Trust, chaired by the great Educationalist, 'Vidhya Rathna' Prof. Dr. M. KARUNANITHI, B.Pharm., M.S., Ph.D., D.Litt., sponsors this college and other institutions under the name of the great Saint Vivekanandha. Our institutions are situated on either side of Tiruchengode Namakkal Main Road at Elayampalayam, 6 km away from Tiruchengode. This is the biggest women's college in India with more than 7500 girl students and more than 18 departments. The strength of the college was just 65 at the time of its establishment. With the chairman's dedication, work, sacrifice, and long vision, this institution has grown into a Himalayan stage. As a result of which UGC, New Delhi, awarded 2f and 12B, extended Autonomous status for the second cycle. The National Assessment and Accreditation Council reaccredited it with a grade of 'A' for its successful performance. As an Autonomous Institution, academic professionals of the college framed Curriculum and Syllabi in consultation with all its stakeholders to cater to the needs of young women to fulfil women's empowerment and present Industrial needs to the local benefits. The students are empowered with confidence and the required skills to face society.

Quality Policy

To provide professional training by establishing a high-level center of learning that provides quality education at par with international standards and provides excellent education with well-equipped infrastructure to all rural women.

Our Vision

To be an academic institution exclusively for women, in dynamic equilibrium with the social and economic environment, strive continuously for excellence in education, research, and technological service to the nation.

Our Mission

The mission of our institution is to discover, teach and apply knowledge for the intellectual, cultural, ethical, social, and economic growth of women students.

REGULATIONS 1 SCOPE OF THE COURSE 2 SALIENT FEATURES 3 OBJECTIVES 4 ELIGIBILITY FOR ADMISSION 5 DURATION OF THE COURSE 6 ASSESSMENT 7 PASSING MINIMUM 8 CLASSIFICATION OF SUCCESSFUL CANDIDATES 9 ELIGIBILITY FOR AWARD OF THE DEGREE 10 PROCEDURE IN THE EVENT OF FAILURE 11 COMMENCEMENT OF THESE REGULATIONS 12 COURSE PATTERN 13 BLOOM'S TAXONOMY-BASED ASSESSMENT PATTERN 14 Colorise PATTERN 15 COURSE PATTERN WITH PAPERS 1 Concepts of Organic Chemistry and Stereochemistry 2 Transition metal and Nuclear Chemistry 3 Group theory, Kinetics, and Surface Chemistry 4 Colorimetric Estimations and Inorganic Qualitative Analysis - Practical 5 Qualitative Analysis of Organic Mixture and Chromatography Techniques - Practical 6 Elective-I 6 Electi	S. No.	TOPICS						
2 SALIENT FEATURES 3 OBJECTIVES 4 ELIGIBILITY FOR ADMISSION 5 DURATION OF THE COURSE 6 ASSESSMENT 7 PASSING MINIMUM 8 CLASSIFICATION OF SUCCESSFUL CANDIDATES 9 ELIGIBILITY FOR AWARD OF THE DEGREE 10 PROCEDURE IN THE EVENT OF FAILURE 11 COMMENCEMENT OF THESE REGULATIONS 12 COURSE PATTERN 13 BLOOM'S TAXONOMY-BASED ASSESSMENT PATTERN SYLLABUS FOR YEAR I (Semester I) COURSE PATTERN WITH PAPERS 1 Concepts of Organic Chemistry and Stereochemistry 2 Transition metal and Nuclear Chemistry 3 Group theory, Kinetics, and Surface Chemistry 4 Colorimetric Estimations and Inorganic Qualitative Analysis - Practical 5 Qualitative Analysis of Organic Mixture and Chromatography Techniques - Practical 6 Elective-I SYLLABUS FOR YEAR I (Semester II) COURSE PATTERN WITH PAPERS 1 Organic Reaction Mechanism 2 Chemical Bonding and Coordination Chemistry 3 Quant		REGULATIONS						
3 OBJECTIVES 4 ELIGIBILITY FOR ADMISSION 5 DURATION OF THE COURSE 6 ASSESSMENT 7 PASSING MINIMUM 8 CLASSIFICATION OF SUCCESSFUL CANDIDATES 9 ELIGIBILITY FOR AWARD OF THE DEGREE 10 PROCEDURE IN THE EVENT OF FAILURE 11 COMMENCEMENT OF THESE REGULATIONS 12 COURSE PATTERN 13 BLOOM'S TAXONOMY-BASED ASSESSMENT PATTERN SYLLABUS FOR YEAR I (Semester I) COURSE PATTERN WITH PAPERS 1 Concepts of Organic Chemistry and Stereochemistry 2 Transition metal and Nuclear Chemistry 3 Group theory, Kinetics, and Surface Chemistry 4 Colorimetric Estimations and Inorganic Qualitative Analysis - Practical 5 Qualitative Analysis of Organic Mixture and Chromatography Techniques - Practical 6 Elective-I SYLLABUS FOR YEAR I (Semester II) COURSE PATTERN WITH PAPERS 1 Organic Reaction Mechanism 2 Chemical Bonding and Coordination Chemistry 3 Quantum Chemistry and Thermodynamics	1	SCOPE OF THE COURSE						
4 ELIGIBILITY FOR ADMISSION 5 DURATION OF THE COURSE 6 ASSESSMENT 7 PASSING MINIMUM 8 CLASSIFICATION OF SUCCESSFUL CANDIDATES 9 ELIGIBILITY FOR AWARD OF THE DEGREE 10 PROCEDURE IN THE EVENT OF FAILURE 11 COMMENCEMENT OF THESE REGULATIONS 12 COURSE PATTERN 13 BLOOM'S TAXONOMY-BASED ASSESSMENT PATTERN SYLLABUS FOR YEAR I (Semester I) COURSE PATTERN WITH PAPERS 1 Concepts of Organic Chemistry and Stereochemistry 2 Transition metal and Nuclear Chemistry 3 Group theory, Kinetics, and Surface Chemistry 4 Colorimetric Estimations and Inorganic Qualitative Analysis - Practical 5 Qualitative Analysis of Organic Mixture and Chromatography Techniques - Practical 6 Elective-I SYLLABUS FOR YEAR I (Semester II) COURSE PATTERN WITH PAPERS 1 Organic Reaction Mechanism 2 Chemical Bonding and Coordination Chemistry 3 Quantum Chemistry and Thermodynamics 4 Inorganic Estimation and Complex Pr	2	SALIENT FEATURES						
5 DURATION OF THE COURSE 6 ASSESSMENT 7 PASSING MINIMUM 8 CLASSIFICATION OF SUCCESSFUL CANDIDATES 9 ELIGIBILITY FOR AWARD OF THE DEGREE 10 PROCEDURE IN THE EVENT OF FAILURE 11 COMMENCEMENT OF THESE REGULATIONS 12 COURSE PATTERN 13 BLOOM'S TAXONOMY-BASED ASSESSMENT PATTERN SYLLABUS FOR YEAR I (Semester I) COURSE PATTERN WITH PAPERS 1 Concepts of Organic Chemistry and Stereochemistry 2 Transition metal and Nuclear Chemistry 3 Group theory, Kinetics, and Surface Chemistry 4 Colorimetric Estimations and Inorganic Qualitative Analysis - Practical 5 Qualitative Analysis of Organic Mixture and Chromatography Techniques - Practical 6 Elective-I SYLLABUS FOR YEAR I (Semester II) 1 Organic Reaction Mechanism 2 Chemical Bonding and Coordination Chemistry 3 Quantum Chemistry and Thermodynamics 1 Inorganic Estimation and Complex Preparations - Practical 5 Organic Preparations and Estimation - Practical	3	OBJECTIVES						
6 ASSESSMENT 7 PASSING MINIMUM 8 CLASSIFICATION OF SUCCESSFUL CANDIDATES 9 ELIGIBILITY FOR AWARD OF THE DEGREE 10 PROCEDURE IN THE EVENT OF FAILURE 11 COMMENCEMENT OF THESE REGULATIONS 12 COURSE PATTERN 13 BLOOM'S TAXONOMY-BASED ASSESSMENT PATTERN 13 BLOOM'S TAXONOMY-BASED ASSESSMENT PATTERN 14 COURSE PATTERN WITH PAPERS 15 COURSE PATTERN WITH PAPERS 16 Colorimetric Estimations and Inorganic Qualitative Analysis - Practical 17 Group theory, Kinetics, and Surface Chemistry 28 Qualitative Analysis of Organic Mixture and Chromatography Techniques - Practical 29 SYLLABUS FOR YEAR I (Semester II) 20 COURSE PATTERN WITH PAPERS 21 Organic Reaction Mechanism 22 Chemical Bonding and Coordination Chemistry 33 Quantum Chemistry and Thermodynamics 44 Inorganic Estimation and Complex Preparations - Practical 55 Organic Preparations and Estimation - Practical 54 Inorganic Estimation and Complex Preparations - Practical 55	4	ELIGIBILITY FOR ADMISSION						
7 PASSING MINIMUM 8 CLASSIFICATION OF SUCCESSFUL CANDIDATES 9 ELIGIBILITY FOR AWARD OF THE DEGREE 10 PROCEDURE IN THE EVENT OF FAILURE 11 COMMENCEMENT OF THESE REGULATIONS 12 COURSE PATTERN 13 BLOOM'S TAXONOMY-BASED ASSESSMENT PATTERN 13 BLOOM'S TAXONOMY-BASED ASSESSMENT PATTERN 14 COURSE PATTERN WITH PAPERS 15 COURSE PATTERN WITH PAPERS 16 Concepts of Organic Chemistry and Stereochemistry 2 Transition metal and Nuclear Chemistry 3 Group theory, Kinetics, and Surface Chemistry 4 Colorimetric Estimations and Inorganic Qualitative Analysis - Practical 5 Qualitative Analysis of Organic Mixture and Chromatography Techniques - Practical 6 Elective-I SYLLABUS FOR YEAR I (Semester II) 2 Chemical Bonding and Coordination Chemistry 3 Quantum Chemistry and Thermodynamics 4 Inorganic Estimation and Complex Preparations - Practical 5 Organic Preparations and Estimation - Practical 6 Elective-II SYLLABUS FOR YEAR II (Semester I	5	DURATION OF THE COURSE						
8 CLASSIFICATION OF SUCCESSFUL CANDIDATES 9 ELIGIBILITY FOR AWARD OF THE DEGREE 10 PROCEDURE IN THE EVENT OF FAILURE 11 COMMENCEMENT OF THESE REGULATIONS 12 COURSE PATTERN 13 BLOOM'S TAXONOMY-BASED ASSESSMENT PATTERN SYLLABUS FOR YEAR I (Semester I) COURSE PATTERN WITH PAPERS 1 Concepts of Organic Chemistry and Stereochemistry 2 Transition metal and Nuclear Chemistry 3 Group theory, Kinetics, and Surface Chemistry 4 Colorimetric Estimations and Inorganic Qualitative Analysis - Practical 5 Qualitative Analysis of Organic Mixture and Chromatography Techniques - Practical 6 Elective-I SYLLABUS FOR YEAR I (Semester II) COURSE PATTERN WITH PAPERS 1 Organic Reaction Mechanism 2 Chemical Bonding and Coordination Chemistry 3 Quantum Chemistry and Thermodynamics 4 Inorganic Estimation and Complex Preparations - Practical 5 Organic Preparations and Estimation - Practical 6 Elective-II	6	ASSESSMENT						
9 ELIGIBILITY FOR AWARD OF THE DEGREE 10 PROCEDURE IN THE EVENT OF FAILURE 11 COMMENCEMENT OF THESE REGULATIONS 12 COURSE PATTERN 13 BLOOM'S TAXONOMY-BASED ASSESSMENT PATTERN 13 BLOOM'S TAXONOMY-BASED ASSESSMENT PATTERN 13 BLOOM'S TAXONOMY-BASED ASSESSMENT PATTERN 14 COURSE PATTERN WITH PAPERS 15 COURSE of Organic Chemistry and Stereochemistry 26 Transition metal and Nuclear Chemistry 31 Group theory, Kinetics, and Surface Chemistry 32 Group theory, Kinetics, and Surface Chemistry 34 Colorimetric Estimations and Inorganic Qualitative Analysis - Practical 55 Qualitative Analysis of Organic Mixture and Chromatography Techniques - Practical 66 Elective-I SYLLABUS FOR YEAR I (Semester II) COURSE PATTERN WITH PAPERS 10 Organic Reaction Mechanism 22 Chemical Bonding and Coordination Chemistry 33 Quantum Chemistry and Thermodynamics 44 Inorganic Estimation and Complex Preparations - Practical 55 Organic Preparations and Estimation - Practical	7	PASSING MINIMUM						
10 PROCEDURE IN THE EVENT OF FAILURE 11 COMMENCEMENT OF THESE REGULATIONS 12 COURSE PATTERN 13 BLOOM'S TAXONOMY-BASED ASSESSMENT PATTERN SYLLABUS FOR YEAR I (Semester I) COURSE PATTERN WITH PAPERS 1 Concepts of Organic Chemistry and Stereochemistry 2 Transition metal and Nuclear Chemistry 3 Group theory, Kinetics, and Surface Chemistry 4 Colorimetric Estimations and Inorganic Qualitative Analysis - Practical 5 Qualitative Analysis of Organic Mixture and Chromatography Techniques - Practical 6 Elective-I SYLLABUS FOR YEAR I (Semester II) COURSE PATTERN WITH PAPERS 0 Organic Reaction Mechanism 2 Chemical Bonding and Coordination Chemistry 3 Quantum Chemistry and Thermodynamics 4 Inorganic Estimation and Complex Preparations - Practical 5 Organic Preparations and Estimation - Practical 6 Elective-II SYLLABUS FOR YEAR II (Semester III)	8	CLASSIFICATION OF SUCCESSFUL CANDIDATES						
11 COMMENCEMENT OF THESE REGULATIONS 12 COURSE PATTERN 13 BLOOM'S TAXONOMY-BASED ASSESSMENT PATTERN 13 BLOOM'S TAXONOMY-BASED ASSESSMENT PATTERN 13 BLOOM'S TAXONOMY-BASED ASSESSMENT PATTERN 14 COURSE PATTERN WITH PAPERS 15 COURSE PATTERN WITH PAPERS 16 Concepts of Organic Chemistry and Stereochemistry 27 Transition metal and Nuclear Chemistry 38 Group theory, Kinetics, and Surface Chemistry 44 Colorimetric Estimations and Inorganic Qualitative Analysis - Practical 54 Qualitative Analysis of Organic Mixture and Chromatography Techniques - Practical 66 Elective-I 56 Elective-I 51 Organic Reaction Mechanism 52 Chemical Bonding and Coordination Chemistry 33 Quantum Chemistry and Thermodynamics 44 Inorganic Estimation and Complex Preparations - Practical 54 Inorganic Preparations and Estimation - Practical 55 Organic Preparations and Estimation - Practical 66 Elective-II	9	ELIGIBILITY FOR AWARD OF THE DEGREE						
12 COURSE PATTERN 13 BLOOM'S TAXONOMY-BASED ASSESSMENT PATTERN 13 BLOOM'S TAXONOMY-BASED ASSESSMENT PATTERN 14 SYLLABUS FOR YEAR I (Semester I) 2 COURSE PATTERN WITH PAPERS 1 Concepts of Organic Chemistry and Stereochemistry 2 Transition metal and Nuclear Chemistry 3 Group theory, Kinetics, and Surface Chemistry 4 Colorimetric Estimations and Inorganic Qualitative Analysis - Practical 5 Qualitative Analysis of Organic Mixture and Chromatography Techniques - Practical 6 Elective-I SYLLABUS FOR YEAR I (Semester II) COURSE PATTERN WITH PAPERS 1 Organic Reaction Mechanism 2 Chemical Bonding and Coordination Chemistry 3 Quantum Chemistry and Thermodynamics 4 Inorganic Estimation and Complex Preparations - Practical 5 Organic Preparations and Estimation - Practical 6 Elective-II SYLLABUS FOR YEAR II (Semester III)	10	PROCEDURE IN THE EVENT OF FAILURE						
13 BLOOM'S TAXONOMY-BASED ASSESSMENT PATTERN 13 BLOOM'S TAXONOMY-BASED ASSESSMENT PATTERN SYLLABUS FOR YEAR I (Semester I) COURSE PATTERN WITH PAPERS 1 Concepts of Organic Chemistry and Stereochemistry 2 Transition metal and Nuclear Chemistry 3 Group theory, Kinetics, and Surface Chemistry 4 Colorimetric Estimations and Inorganic Qualitative Analysis - Practical 5 Qualitative Analysis of Organic Mixture and Chromatography Techniques - Practical 6 Elective-I SYLLABUS FOR YEAR I (Semester II) COURSE PATTERN WITH PAPERS 1 Organic Reaction Mechanism 2 Chemical Bonding and Coordination Chemistry 3 Quantum Chemistry and Thermodynamics 4 Inorganic Estimation and Complex Preparations - Practical 5 Organic Preparations and Estimation - Practical 6 Elective-II SYLLABUS FOR YEAR II (Semester III)	11	COMMENCEMENT OF THESE REGULATIONS						
SYLLABUS FOR YEAR I (Semester I) COURSE PATTERN WITH PAPERS 1 Concepts of Organic Chemistry and Stereochemistry 2 Transition metal and Nuclear Chemistry 3 Group theory, Kinetics, and Surface Chemistry 4 Colorimetric Estimations and Inorganic Qualitative Analysis - Practical 5 Qualitative Analysis of Organic Mixture and Chromatography Techniques - Practical 6 Elective-I SYLLABUS FOR YEAR I (Semester II) COURSE PATTERN WITH PAPERS 1 Organic Reaction Mechanism 2 Chemical Bonding and Coordination Chemistry 3 Quantum Chemistry and Thermodynamics 4 Inorganic Estimation and Complex Preparations - Practical 5 Organic Preparations and Estimation - Practical 6 Elective-II SYLLABUS FOR YEAR II (Semester III)	12	COURSE PATTERN						
COURSE PATTERN WITH PAPERS1Concepts of Organic Chemistry and Stereochemistry2Transition metal and Nuclear Chemistry3Group theory, Kinetics, and Surface Chemistry4Colorimetric Estimations and Inorganic Qualitative Analysis - Practical5Qualitative Analysis of Organic Mixture and Chromatography Techniques - Practical6Elective-ISYLLABUS FOR YEAR I (Semester II)COURSE PATTERN WITH PAPERS1Organic Reaction Mechanism2Chemical Bonding and Coordination Chemistry3Quantum Chemistry and Thermodynamics4Inorganic Estimation and Complex Preparations - Practical5Organic Preparations and Estimation - Practical6Elective-II	13	BLOOM'S TAXONOMY-BASED ASSESSMENT PATTERN						
1Concepts of Organic Chemistry and Stereochemistry2Transition metal and Nuclear Chemistry3Group theory, Kinetics, and Surface Chemistry4Colorimetric Estimations and Inorganic Qualitative Analysis - Practical5Qualitative Analysis of Organic Mixture and Chromatography Techniques - Practical6Elective-ISYLLABUS FOR YEAR I (Semester II)COURSE PATTERN WITH PAPERS1Organic Reaction Mechanism2Chemical Bonding and Coordination Chemistry3Quantum Chemistry and Thermodynamics4Inorganic Estimation and Complex Preparations - Practical5Organic Preparations and Estimation - Practical6Elective-II	SYLLABUS FOR YEAR I (Semester I)							
2 Transition metal and Nuclear Chemistry 3 Group theory, Kinetics, and Surface Chemistry 4 Colorimetric Estimations and Inorganic Qualitative Analysis - Practical 5 Qualitative Analysis of Organic Mixture and Chromatography Techniques Practical Elective-I SYLLABUS FOR YEAR I (Semester II) COURSE PATTERN WITH PAPERS Organic Reaction Mechanism Chemical Bonding and Coordination Chemistry Quantum Chemistry and Thermodynamics Inorganic Estimation and Complex Preparations - Practical Organic Preparations and Estimation - Practical Elective-II 		COURSE PATTERN WITH PAPERS						
3Group theory, Kinetics, and Surface Chemistry4Colorimetric Estimations and Inorganic Qualitative Analysis - Practical5Qualitative Analysis of Organic Mixture and Chromatography Techniques - Practical6Elective-ISYLLABUS FOR YEAR I (Semester II)COURSE PATTERN WITH PAPERS1Organic Reaction Mechanism2Chemical Bonding and Coordination Chemistry3Quantum Chemistry and Thermodynamics4Inorganic Estimation and Complex Preparations - Practical5Organic Preparations and Estimation - Practical6Elective-IISYLLABUS FOR YEAR II (Semester III)	1	Concepts of Organic Chemistry and Stereochemistry						
4Colorimetric Estimations and Inorganic Qualitative Analysis - Practical5Qualitative Analysis of Organic Mixture and Chromatography Techniques - Practical6Elective-ISYLLABUS FOR YEAR I (Semester II)COURSE PATTERN WITH PAPERS1Organic Reaction Mechanism2Chemical Bonding and Coordination Chemistry3Quantum Chemistry and Thermodynamics4Inorganic Estimation and Complex Preparations - Practical5Organic Preparations and Estimation - Practical6Elective-IISYLLABUS FOR YEAR II (Semester III)	2	Transition metal and Nuclear Chemistry						
5Qualitative Analysis of Organic Mixture and Chromatography Techniques - Practical6Elective-ISYLLABUS FOR YEAR I (Semester II)COURSE PATTERN WITH PAPERS1Organic Reaction Mechanism2Chemical Bonding and Coordination Chemistry3Quantum Chemistry and Thermodynamics4Inorganic Estimation and Complex Preparations - Practical5Organic Preparations and Estimation - Practical6Elective-IISYLLABUS FOR YEAR II (Semester III)	3	Group theory, Kinetics, and Surface Chemistry						
 - Practical Elective-I SYLLABUS FOR YEAR I (Semester II) COURSE PATTERN WITH PAPERS Organic Reaction Mechanism Chemical Bonding and Coordination Chemistry Quantum Chemistry and Thermodynamics Inorganic Estimation and Complex Preparations - Practical Organic Preparations and Estimation - Practical Elective-II 	4	Colorimetric Estimations and Inorganic Qualitative Analysis - Practical						
SYLLABUS FOR YEAR I (Semester II) COURSE PATTERN WITH PAPERS 1 Organic Reaction Mechanism 2 Chemical Bonding and Coordination Chemistry 3 Quantum Chemistry and Thermodynamics 4 Inorganic Estimation and Complex Preparations - Practical 5 Organic Preparations and Estimation - Practical 6 Elective-II SYLLABUS FOR YEAR II (Semester III)	5							
COURSE PATTERN WITH PAPERS Organic Reaction Mechanism Chemical Bonding and Coordination Chemistry Quantum Chemistry and Thermodynamics Inorganic Estimation and Complex Preparations - Practical Organic Preparations and Estimation - Practical Elective-II SYLLABUS FOR YEAR II (Semester III)	6	Elective-I						
1Organic Reaction Mechanism2Chemical Bonding and Coordination Chemistry3Quantum Chemistry and Thermodynamics4Inorganic Estimation and Complex Preparations - Practical5Organic Preparations and Estimation - Practical6Elective-IISYLLABUS FOR YEAR II (Semester III)		SYLLABUS FOR YEAR I (Semester II)						
2 Chemical Bonding and Coordination Chemistry 3 Quantum Chemistry and Thermodynamics 4 Inorganic Estimation and Complex Preparations - Practical 5 Organic Preparations and Estimation - Practical 6 Elective-II SYLLABUS FOR YEAR II (Semester III)		COURSE PATTERN WITH PAPERS						
3 Quantum Chemistry and Thermodynamics 4 Inorganic Estimation and Complex Preparations - Practical 5 Organic Preparations and Estimation - Practical 6 Elective-II SYLLABUS FOR YEAR II (Semester III)	1	Organic Reaction Mechanism						
4 Inorganic Estimation and Complex Preparations - Practical 5 Organic Preparations and Estimation - Practical 6 Elective-II SYLLABUS FOR YEAR II (Semester III)	2	Chemical Bonding and Coordination Chemistry						
5 Organic Preparations and Estimation - Practical 6 Elective-II SYLLABUS FOR YEAR II (Semester III)	3	Quantum Chemistry and Thermodynamics						
6 Elective-II SYLLABUS FOR YEAR II (Semester III)	4	Inorganic Estimation and Complex Preparations - Practical						
SYLLABUS FOR YEAR II (Semester III)	5	Organic Preparations and Estimation - Practical						
	6	Elective-II						
COURSE PATTERN WITH PAPERS		SYLLABUS FOR YEAR II (Semester III)						
		COURSE PATTERN WITH PAPERS						
1 Natural products, Pericyclic reactions, and Retro synthesis	1	Natural products, Pericyclic reactions, and Retro synthesis						

2	Organometallic, Solid state, Spectroscopy, and Bio-inorganic Chemistry			
3	Physical Chemistry Electrical Practical			
4	Elective-III			
5	Human Rights			
6	EDC			
SYLLABUS FOR YEAR II (Semester IV)				
1	Electrochemistry and Photochemistry			
2	Elective-IV			
3	Physical Chemistry Non-Electrical – Practical			
4	Project			

M.Sc CHEMISTRY REGULATIONS

I. SCOPE OF THE PREAMBLE

The uniqueness of the M.Sc. (Chemistry) program is its content and topic coverage, the teaching methodology and the faculty. The program expects a serious commitment of the students to take up challenging study schedules and assignments. The course involves a blend of theoretical education and practical training which run concurrently for a period of three years and equips a student with the knowledge, ability, skills, and other qualities.

The teaching methodologies include classroom lectures, industrial visits, orientation, and internships. The new syllabus may help the students to understand the newer aspects of chemistry and apply the same to real-life situations. Thus, the students turn more relevant and resourceful to society. It may enable young minds to think differently and forms a link between old ideas and new ideas in chemistry and gives comprehensive approaches to the very learning process and the learners. To have academic flexibility we have chosen and implemented Choice Based Credit System (CBCS) in our syllabus. To enhance the quality of students from 2018-2019, we have implemented an Outcome Based Education (OBE) education system for I PG students. The OBE pattern will be extended for the II PG students in forthcoming years.

II. SALIENT FEATURES

- > The course is specially designed for higher-level career placement.
- > Special guest lecturers from Industrialists will be arranged.
- Exclusively caters to students interested in pursuing higher studies.
 Special industry orientations and training are parts of the degree course.
- Project work is included in the syllabus to enhance conceptual, analytical, and deductive skills.

III. PROGRAMME O B J E C T I V E S

The new syllabi throw light on the recent and emerging areas of chemistry.

- ✓ Enable the students to understand chemistry and make them more relevant to society.
- ✓ Develop the analytical ability in students so that they prepared themselves in solving problems.
- ✓ Help the students to learn practical skills in a better way.
- ✓ Inculcate research aptitude in students.
- ✓ Enable the students to go to higher levels of learning chemistry.
- ✓ Improve the employability of the students.
- ✓ To inspire the students to apply their knowledge gained for the development of society in general.

IV. ELIGIBILITY FOR ADMISSION

Candidates seeking admission to the first year PG Degree course (M.Sc. chemistry) shall be required to have passed B.Sc., (Chemistry) B.Sc., (Applied chemistry) and B.Sc., (Industrial chemistry).

V. DURATION OF THE PROGRAMME

- The course shall extend over a period of two academic years consisting of four semesters. Each academic year will be divided into two semesters. The first semester will consist of the period from July to November and the second semester from December to April.
- The subjects of the study shall be in accordance with the syllabus prescribed from time to time by the Board of Studies of Vivekanandha College of Arts and Sciences for Women with the approval of Periyar University.
- Each subject will have 5 or 4 hours of lecture per week apart from practical training at the end of the academic year.

VI. ASSESSMENT

Assessment of the students would be made through Continuous Internal Assessment (CIA) and External Assessment (EA) for passing each subject both theory and practical papers. A candidate would be permitted to appear for the External Examination only on earning 75 % of attendance and only when her conduct has been satisfactory. It shall be open to granting exemption to a candidate for valid reasons subject to conditions prescribed.

A. CONTINUOUS INTERNAL ASSESSMENT (CIA)

The performance of the students will be assessed continuously and the Internal Assessment Marks will be made as follows:

1. Average of two CIA tests and Model exam - 10 Marks

2. Seminar		- 05 Marks
3. Assignment		- 05 Marks
3. Attendance		- 05 Marks
	Total	=25 Marks

DISTRIBUTION OF ATTENDANCE MARK

C.N.	Description	Marks			
S. No.	Percentage	Theory	Practical		
1	76-80	1	2		
2	81-85	2	4		
3	86-90	3	6		
4	91-95	4	8		
5	96-100	5	10		

B. EXTERNAL ASSESSMENT (EA)

The performance of the students would be assessed by examination at the end of each semester with a written test for theory for three hours and a practical examination at the end of even semesters for six hours. Question papers would be set by the selected external examiners in the prescribed format and evaluated by the external examiners with the help of the teacher's concern. The pattern of assessment is as follows:

Distribution of Final Assessment Marks (Theory-75, Practicals-60)
PHYSICAL CHEMISTRY LABORATORY

Section	Theory	Marks (75)	Practical	Marks (60)
А	One mark (20)	20	Record work	5
В	Five marks (Either or)	25	Viva Voce	10
С	Ten marks (3/5)	30	Experimental Skill	15
			Result	30
	Total	75	Total	60

ORGANIC AND INORGANIC CHEMISTRY LABORATORY

Practical	Marks (60)
Record work	5
Viva Voce	10
Analysis/Estimation	25
Procedure	10
Preparation	10
Total	60

Direct	
	1. Continuous Assessment Test I, II & Model 2. Assignment 3. End Semester Examinations
Indirect	

1. Course End Delivery

C. COURSE ASSESSMENT METHODS (Theory)

VII. PASSING MINIMUM

INTERNAL

There is no passing minimum for the CIA

EXTERNAL

In the University Examinations, the passing minimum shall be 50 % of 75 Marks for theory (38 marks) and 50% of 60 marks for practical (30 Marks).

VIII. CLASSIFICATION OF SUCCESSFUL CANDIDATES

Successful candidates passing the examination of Core Courses and elective courses, and secure marks

- a) 75 % and above shall be declared to have passed the examination in first class with Distinction provided they pass all the examinations prescribed for the programme at first appearance itself.
- b) 60% and above shall be declared to have passed the examinations in first class without Distinction.
- c) 50% and above but below 60% shall be declared to have passed the examinations in second class.
- d) Candidates who pass all the examinations prescribed for the programme at the first appearance itself and within a period of two consecutive academic years from the year of admission only will be eligible for university rank.

IX. ELIGIBILITY FOR AWARD OF THE DEGREE

A candidate shall be eligible for the award of the degree only if she has undergone the above degree for a period of not less than two academic years comprising four semesters and passed the examinations prescribed and fulfilled such conditions have been prescribed.

X. PROCEDURE IN THE EVENT OF FAILURE

If a candidate fails in a particular subject, she may reappear for the

end-semesterexamination in the concerned subject in subsequent semesters and shall pass the examination.

XI. COMMENCEMENT OF THESE REGULATIONS

These regulations shall take effect from the academic year 2022-23 (i.e.,) for the students who are to be admitted to the first year of the course during the academic year 2022-23 and thereafter.

CEM	Course Code	6		Ins.		Marks		Tatal
SEM			Course Title	Hrs / Week	Credit	CIA	ESE	Total
	22P1CH01	Core - I	Concepts of Organic Chemistry and Stereochemistry	5	5	25	75	100
	22P1CH02	Core - II	Transition metal and Nuclear Chemistry	5	5	25	75	100
	22P1CH03	Core - III	Group theory, Kinetics, and Surface Chemistry	5	5	25	75	100
I	22P1CHP01	Practical	Colorimetric Estimations and Inorganic Qualitative Analysis - Practical	5	4	40	60	100
	22P1CHP02 Practical		Qualitative Analysis of Organic Mixture and Chromatographic Techniques - Practical	5	4	40	60	100
22P1CHE01/ 02		Elective-I		4	3	25	75	100
		Libra	ry	1				
	TOTAL			30	26	180	420	600
	22P2CH04	Core-IV	Organic Reaction Mechanism	5	5	25	75	100
	22P2CH05	Core-V	Chemical Bonding and Coordination Chemistry	5	5	25	75	100
	22P2CH06	Core – VI	Quantum Chemistry and Thermodynamics	5	5	25	75	100
II	22P2CHP03	Practical	Inorganic Estimation and Complex Preparations - Practical	5	4	40	60	100
	22P2CHP04	Practical	Organic Preparations and Estimation - Practical	5	4	40	60	100

SYLLABUS FRAMEWORK

	22P2CHE03/ 04	Elective-II		4	3	25	75	100
		Library		1		-		
		TOTAL		30	26	180	420	600
	22P3CH07	Core - VII	Natural products, Pericyclic reactions, and Retro synthesis	5	5	25	75	100
	22P3CH08	Core - VIII	Organometallic, Solid		5	25	75	100
III	22P3CHP05	Practical	Physical Chemistry Electrical Practical	5	4	40	60	100
	22P3CHE05/ 06	Elective-III		4	3	25	75	100
	22P3HR01	Human Rights		2	1	25	75	100
	22P3CHED01 /02	EDC		4	3	25	75	100
	22P3CHEC1	Extra Credit Course-I		-	4*	-	-	500
		TOTAL	1	25	21	165	435	1100
	22P4CH09	Core – IX	Electrochemistry and Photochemistry	5	5	25	75	100
	22P4CHE07/ 08		Elective-IV	4	3	25	75	100
IV	22P4CHP06	Practical	Physical Chemistry Non-Electrical - Practical	5	4	40	60	100
	22P4CHPR01	Project		16	5	40	60	100
	22P4CHEC2	Extra Credit Course-II		-	4*	-	-	100*
	TOTAL			30	18	130	270	500
	(GRAND TOT	AL	115	91	655	1545	2800

*Not considered for grand total and CGPA

SEM	Course code	Course Title
T	22P1CHE01	Nanoscience and Nanotechnology
I	22P1CHE02	Instrumental Methods of Analysis
II	22P2CHE03	Supramolecular chemistry
	22P2CHE04	Organic Spectroscopy
III	22P3CHE05	Physical methods in Chemistry
	22P3CHE06	Industrial Chemistry

ELECTIVE COURSES (Chemistry Department)

IV	22P4CHE07	Environmental Chemistry
IV	22P4CHE08	Green Chemistry

EXTRA DISCIPILINARY COURSES (Other Department)

SEM	Course code	Course Title		
T	22P3CHED01	Applied Polymer Chemistry		
1	22P3CHED02	Dairy Chemistry		

XIII.BLOOM'S TAXONOMY-BASED ASSESSMENT PATTERN

K1-Remember; K2- Understanding; K3- Apply; K4-Analyze; K5- Evaluate

1. Theory: 75 Marks

(i)Test - I & II and ESE:

Knowledge Level	Section Marks De		Description	Total Marks
K1	A (One Mark)	20 x 01=20	Objective	
K2	B (Either /or pattern)	05 x 05=25	Descriptive	75
K3, K4 & K5	C (Three out of five)	03 x 10=30	Detailed	

PROGRAMME OUTCOMES

PO 1	Capable of demonstrating comprehensive knowledge and understanding of the disciplines.
PO 2	Ability to express thoughts and ideas effectively in writing and orally Communicating with others.
PO 3	Capability to apply analytical thoughts to a body of knowledge, analyze and evaluate evidence, arguments, claims, and beliefs based on empirical evidence.
PO 4	Capacity solves different kinds of problems and appliesone learning to real-life situations.
PO 5	Ability to analyzeinterprets and concludes quantitative qualitative data.
PO 6	The capability to use ICT in a variety of learning situations demonstratesthe ability to access evaluate, use a variety of relevant information sources and use appropriate software for the analysis of data.
PO 7	Ability to work independently, identifies appropriate resources required for a project, and manages a project through to completion.
PO 8	Ability to acquire knowledge and skills including learning how to learn that are necessary for participating in learning activities throughout life through self-paced.

PROGRAMME SPECIFIC OUTCOMES

PS01: To foster a theoretical and practical knowledge of chemistry and its applications and to make responsible citizenships.

PS02: To deepen learner capacity for productive scientific thinking both within and beyond the classroom through extensive programs.

PS03: To cultivate problem-solving skills through chemical knowledge to address environmental problems, and to complement and reflect on social needs.

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN(AUTONOMOUS)

Elayampalayam, Tiruchengode-637 205.

Programme	M.Sc ProgrammeCode		M.Sc ProgrammeCode PCH			Regulations		2022-2024	
Department	Chemistry					Semester			1
Course Code	Cou	-	Hours r We	-	Credit	Maxi	mum	Marks	
			L	Т	Р	С	CA	ESE	Total
22P1CH01	CORE PAPER Concepts of Or and Stereocher	5	-	-	05	25	75	100	
Course Objectives	To enable the s knowledge in v		hemi	stry	of organic	e compoun	ds to e	enrich their	

COs	COURSE OUTCOMES
CO 1	Students will be known to name the organic compounds systematically and they will be able to identify the aromaticity of any organic compound.
CO 2	Students will be able to understand the role and formation of intermediates in organic reactions and can determine the mechanism of new organic reactions.
CO 3	Students will be well-known for nucleophillic substitution reactions.
CO 4	Students can understand the difference between nucleophillic and Electrophilic substitution reactions, which will be well-known Electrophilic substitution reactions. Various types of substitution reactions will help the students to carry out the research in future
CO 5	Knowledge of students will be enriched with fundamentals of stereochemistry
Pre-requisites	

KNOWLEDGE LEVELS (KLs)

1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing	g
CO / PO / PSO/ KL Mapping	

(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)

	(3/2/1 ind)	icates the st	trength of co	rrelation, 3	strong, 2-me	dium, 1-we	ak)	
COs	5	ŀ	KLs	I	POs	KLs		
CO	l	4		Р	01	2		
CO	2		1	Р	O 2		1	
CO S	3		3	Р	PO 3 5			
CO 4		3		PO 4		5		
CO S	5		2	PO 5		PO 5 4		
PSO 1	l		3	Р	06		6	
PSO	2		2	PO 7		2		
PSO	3	B 2 PO 8		3				
			CO/PC) Mapping				
(.	3/2/1 indic	ates the str	ength of corr	elation, 3-st	trong, 2-med	ium, 1-weal	k)	
COs PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	

CO1	1	1	2	2	3	1	1	2
CO2	2	3	1	1	1	1	2	1
CO3	2	1	1	1	2	1	2	3
CO4	1	1	3	3	2	2	1	1
CO5	1	1	2	2	1	3	1	1

CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)					
COs		Programme	Specific Outcome	(POs)	
COS	C01	CO2	CO3	CO4	CO5
PSO1	1	3	2	2	1
PSO2	2	2	1	3	2
PSO3	2	1	2	1	1

	Content of the Syllabus		
	Nomenclature and aromaticity	Hours	15
	Nomenclature of aromatic heterocyclic compounds (containing one	or two hetero
	atoms) - Nomenclature of alicyclic, bicyclic, and tr	icyclic compou	nds. Structure
	and reactivity: Localised and delocalized covalent b	ond - Concep	t of resonance
Unit - I	and aromaticity - Huckel's rule for aromaticity in b	enzenoid and	non-benzenoid
	compounds including pyrrole and pyridine, annulend	es, sydnones, a	and fullerenes.
	Antiaromaticity, homo-aromaticity, and non-aroma	tic compounds	s. Concept of
	alternant and non-alternant hydrocarbons (azulene ty	pe). Effect of	aromaticity on
	bond length, resonance energy, and induced ring curre	ents.	
Unit – II	Reactive intermediates and methods of	Hours	15
Umt – 11	determining reactions		
	Reactive intermediates: Structure stability and	reactivity of	intermediates,
	generation and structure of carbocation, the concept of	of classical and	l non-classical
	carbocations, reactions involving carbocations,	carbanion,	structure and
	reactivity,generation and reactions. Structure and	reactivity of	free radicals,
	carbenes, and nitrenes as intermediates, their structure	re, generation,	and reactions.
	Aryne' mechanism and ways of generation and the		
	hetarynes and reactions. Thermodynamic and k	-	
	postulate, isotope effects. Energy profile diagrams – l		
	state, Product analysis, and its importance, crossov	•	s, kinetic
	methods, stereochemical studies, Isotopic and substitu	1	
	Nucleophilic substitution reactions	Hours	15

Unit -III	Aliphatic Nucleophilic substitution – mechanisms $(S_N 1, S_N 2, S_N structure - stereochemical factors – neighbouring group participation at allylic and vinylic carbons. Correlation of structure with react effects. Aromatic nucleophilic substitution – S_N 1 S_N Ar, Benzyn reactivity orientation.$	on, substitutions ivity – Solvent				
	Electrophilic substitution reactions Hours	15				
Unit - IV	Aliphatic Electrophilic Substitution: SE2, SEi and SE1mechanis coupling reactions. Aromatic electrophilic substitution reaction reactivity and mechanisms based on transition state theory with sui – Origins of Hammett equation – Principles of Hammett correlat structure on reaction mechanisms Hammett, modified forms of Ham Taft Equation. ρ and σ parameters;	- Orientation, table reactions, ion – Effect of				
Unit - V	Stereochemistry Hours	15				
	Principles of symmetry- the concept of chirality, Molecular symmetry and chirality, Newmann, Sawhorse, Fischer, and Wedge representations and interconversions. Types of molecules exhibiting optical activity. Configurational nomenclature of acyclic and cyclic molecules: cis-trans, E & Z, D & L, (+ or –), d & 1, R & S, erythro and threo; syn&anti. Stereospecific, Chemo, Regio, Enantio and stereoselective organic transformations, asymmetric synthesis – Crams rule. Conformational analysis – 1,2disubstitutd ethane derivatives – disubstituted cyclohexanes and their stereochemical features. Conformation and reactivity of substituted cyclohexanols (oxidation) cyclohexanones (reduction) and conformations of heterocycles.					
	Total Hours	75				
Text Books1Ster	eochemistry of Organic Compounds by D. Nasipuri					
	ction Mechanisms in Organic Chemistry, S. M. Mukherjee and S. P. Sin	gh				
	K. Bansal, , Hill Publishing Company Ltd 2006.	0				
Ũ	Ernest L. Eliel, Stereochemistry of Carbon Compounds, T.M.H Edition, 1975.					
6 Org	anic Chemistry (fifth Edn) by Morrison and Boyd, PHI, India.					
References						
1 51	r I.L., Organic chemistry Pearson Education P Ltd 2011					
1 Fina	1.L., Organic chemistry rearson Education r Edu 2011					

3	J. March, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 5 th ed., Wiley,
	2000.
4	Advanced organic chemistry by Jerry March (4 th Edition) Wiley Eastern
E-R	eferences
1	www.masterorganicchemistry.com/2017/02/23/rules-for-aromaticity
2	www.introorganicchemistry.com

HOULEN ENDORENHEIT	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.								ISO 8001 2008
Programme	M.Sc	Programme Code		F	СН		Regulatio	ns	2022-2024
Department	Chemistry					Semester			1
Course Code	Course Name		Hours per Week Credit			Maximum		n Marks	
			L	Т	Р	С	CA	ES	E Total
22P1CH02	CORE PAPER II: Transition metal and Nuclear Chemistry			_	-	05	25	7:	5 100
Course Objectives	 To gain knowledge on the physical and chemical properties of transition and inner transition elements. To give elaborate insight into the field of nuclear chemistry. 								

COs	COURSE OUTCOMES
CO 1	Students will learn the metallurgy and general properties of transition, and inner transition elements.
CO 2	Students can explore the constructive application of nuclear chemistry.
CO 3	Students will know the present national and international status of nuclear missions.
CO 4	Students will analyze the various nuclear decay process.
CO 5	Students will evaluate the present methodologies in nuclear waste treatment.
Pre-requisites	

	KNOWLEDGE LEVELS (KLs)									
1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing										
CO / PO / PSO/ KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
COs	COs KLs POs KLs									
CO 1	4	PO 1	2							
CO 2	1	PO 2	1							
CO 3	3	PO 3	5							
CO 4	3	PO 4	5							
CO 5	2	PO 5	4							
PSO 1	3	PO 6	6							
PSO 2	2	PO 7	2							
PSO 3	2	PO 8	3							

	CO / PO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8			
CO1	1	1	2	2	3	1	1	2			
CO2	2	3	1	1	1	1	2	1			
CO3	2	1	1	1	2	1	2	3			
CO4	1	1	3	3	2	2	1	1			
CO5	1	1	2	2	1	3	1	1			

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)									
COs	Programme Specific Outcome (POs)									
0.05	CO1	CO2	CO3	CO4	CO5					
PSO1	1	3	2	2	1					
PSO2	2	2	1	3	2					
PSO3	2	1	2	1	1					

	Content of the Syllabus							
	Transition Elements	Hours	15					
	Position in the periodic table - Electronic configuration - G	eneral characte	ristics					
- metallic character-Ionisation potential- Variable valency - Colour - M								
Unit - I	t - I properties - Catalytic property - Non-stoichiometry - Stabilization of unusu							
	oxidation states - Formation of coloured complexes and	colorimetry-Str	ructure					
	- $[Mo_6Br_8]^{4+}$	-[Ni ₂ (
	DMG) ₂].							
Unit - II	Inner Transition Elements	Hours	15					
	Position in the periodic table - Electronic configuration	- Oxidation	state -					
	Solubility - Magnetic properties - Separation of lanthan	ides – product	ion of					
	lanthanide metals from lanthanide salt- Lanthanide cont	raction - Caus	se and					
	consequences - Gadolinium break - Shift reagents - Extrac	ction of Thoriu	m and					
	Uranium - Comparison of lanthanides and actinides- applic	cations of lanth	anides					
	and actinides.							
	Fundamentals of Nuclear Chemistry	Hours	15					

		Nuclear structure-mass and charge - Nuclear moments -Nuclear models (shell model and liquid drop model) - Binding energy - Stability rules - Magic								
Uni	it - III	numbers - n/p ratio - PF-Relation between stability of a nucleus and its PF								
		value- Energy spectrum - Geiger-Nutta's rule, Theories of alpha decay - T								
		effect - Beta decay - β^+ and β^- decay - Electron capture - Absorption - Range and								
		Energy - Gamma ray - radioactive de-excitation - decay constant - Nuclear								
		isomerism - Internal conversion - Auger effect.								
		Nuclear Reactions and Instrumental Techniques Hours	15							
		Nuclear reactions-Types of disintegration-Alpha-Beta-Gamma emission-I	Bethe's							
		notation - Q value - Reaction cross section - Threshold energy - Various t	ypes of							
		special nuclear reactions - Scattering - evaporation - photonuclear - Spall	ation -							
Uni	it - IV	Fragmentation - Fission - Fusion - Stripping - Pick-up reactions - Detecti	on and							
		measurement of radioactivity - Proportional counter - Geiger-Muller co	unter -							
		Scintillation counter - Semiconductor detector - Cloud chamber - Charge								
		particle accelerator - Linear accelerator - Cyclotron - Beatron - Synchroton.								
		Nuclear Energy and Trace Elements Hours	15							
		Nuclear fission and Nuclear fusion- Fissionable materials-Fission energy-Fission								
		neutrons-Atom bomb- Theories of fission - Fissile and fertile isotopes - Nuclear								
		fusion and stellar energy - Fusion bomb - synthetic elements - Nuclear wastes -								
Ur	nit - V	nuclear reprocessing - radiation hazards and prevention. Applications of								
		radioactive isotopes - neutron activation analysis - isotopic dilution analysis -								
		Uses of tracers in structural and mechanistic studies, agriculture, medicine and								
		industry - Radio carbon dating - hot atom chemistry - Atomic Power Projects in								
		India- nuclear holocaust.								
		Total Hours	75							
Tex	t Books									
1	H.J. Aı	mikar, Essentials of Nuclear Chemistry, 4th Edn., New Age International 2005	5.							
2	J.D. Le	ee, Concise Inorganic Chemistry, 6th Edn., ELBS, London 1998.								
3	B.R,Pt	rri, L.R.Sharma and K.C.Kalia, Principles of Inorganic Chemistry, 32 nd Edn.,								
	Milesto	one Publishers & Distributers, New Delhi 2016.								
Ref	erences									
1	D. Shri	iver, M. Weller, T. Overton, J. Rourke, and F. Armstrong, Inorganic Chemistr	y, 6th							
1	Edn., V	WH Freeman and Company, New York 2014.								
2	C.E. H	Iousecroft, and A.G. Sharpe, Inorganic Chemistry, 4th Edn., Pearson Educ	cation							
2	Limite	d, Essex 2012.								

E-R	E-References							
1	chemed.chem.purdue.edu/genchem/topicreview/bp/ch23/history.php							

HONEL ENDOWERNEN	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.								CUTURNING
Programme	M.Sc	Programme Code			PCH	[Regulati	ons	2022-2024
Department	Chemistry			Semester					1
Course Code	Course Name		Periods per Week Credit			Maximum Mark		m Marks	
			L	Т	Р	C	CA	ES	SE Total
22P1CH03	CORE PAPER III: Group theory, Kinetics, and Surface Chemistry					05	25	7:	5 100
Course Objectives1.To teach the knowledge of classifying the molecules based on symmetry and gain knowledge in identifying the point group of the unknown molecules. 2.2.Understand the conception of kinetics and catalysis.									

COs	COURSE OUTCOME
CO 1	Students will be able to identify point groups using symmetry elements and recognize symmetry operations.
CO 2	Students will learn to integrate knowledge to make rational answers in solving chemical problems.
CO 3	Students can measure the rate of a chemical reaction.
CO 4	Students will learn to evaluate the effect of catalysts, and temperature on the rate of a chemical reaction and determine the activation energy.
CO 5	Students will learn and understand the importance, applications, and basic aspects of surface chemistry.
Pre-requisites	

	KNOWLEDGE LEVELS (KLs)									
1. Rememberin	1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing									
(3/2/2	CO / PO / PSO/ KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)									
COs	COs KLs POs KLs									
CO 1	4	PO 1	2							
CO 2	1	PO 2	1							
CO 3	3	PO 3	5							
CO 4	3	PO 4	5							
CO 5	2	PO 5	4							
PSO 1	3	PO 6	6							
PSO 2	2	PO 7	2							
PSO 3	2	PO 8	3							

	CO / PO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8			
CO1	1	1	2	2	3	1	1	2			
CO2	2	3	1	1	1	1	2	1			
CO3	2	1	1	1	2	1	2	3			
CO4	1	1	3	3	2	2	1	1			
CO5	1	1	2	2	1	3	1	1			

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)					
COs		Programn	ne Specific Outcom	ne (POs)		
COS	CO1	CO2	CO3	CO4	CO5	
PSO1	1	3	2	2	1	
PSO2	2	2	1	3	2	
PSO3	2	1	2	1	1	

Content of the Syllabus						
	Basics of Group Theory	Periods	15			
	Symmetry - Symmetry elements and Symmetry operation	ons. Group - F	roperties of			
	group - Types of groups - Abelian, non Abelian, sub group	os and cyclic g	oups. Group			
Unit - I	multiplication tables, Classes and similarity transformation	Representation	n of groups -			
	Matrix representation of symmetry elements, Re	ducible and	irreducible			
	representations. Properties of irreducible representation - C	Great orthogona	ality theorem			
	and its consequences - Molecular point groups - Determination of point group of					
	molecules. Construction of character table for point groups (C_{2v} , C_{3v} and C_{2h}).					
Unit - II	Applications of Group Theory	Periods	15			
	Standard reduction formula and conversion of reducible representation and irreducible					
	representation, direct product representation. Hybridization schemes for atoms in					
	molecules of different geometry - AB_4 tetrahedral and AB_3 triangular planar.					
	Symmetries of vibrational modes in non linear molecules (H ₂ O, NH ₃ and BF ₃).					
	Selection rules for vibrational spectroscopy - IR & Raman active, mutual exclusion					
	rule and electronic transitions in formaldehyde.Crystal point group, crystal symmetry -					
	screw axis and glide plane, space groups, translational elements of symmetry,					
	differences between molecular symmetry and crystalsymmetry	etry.				
	Chemical Kinetics	Periods	15			

Unit - III	Reactions in solution: Comparison between gas phase and lique Effect of dielectric constant on reactions in solutions, effect of reactions in solutions - Primary salt effect and secondary Smoluchowski equation.Kinetics of fast reactions: Pulse methods. Branched chain reactions – Stationary, non stationary of explosion limits and explosive reaction of H_2O_2 .	of ionic salt eff thods and	strength on ect. Debye- d relaxation	
	Kinetics and Catalysis Period		15	
Unit - IV	Catalysis - Types –Functions-Characteristics- Theories: Theories catalysis. Kinetics: Homogeneous catalysis, Autocatalytic r catalyzed reactions – effect of pH on reaction rates and enzyme mechanism and factors governing the enzyme catalysis-use of c Inhibition of enzyme catalyzed reactions (any one).	reactions, le catalys	, Acid-base is reactions-	
	Surface Chemistry Perio	ods	15	
Unit - V	Adsorption - Types of adsorption. Physical Adsorption isotherm: Freundlich's adsorption isotherm, Langmuir's adsorption isotherm, Brunauer-Emmett-Teller (BET)Unit - Vadsorption isotherm and its limitations. Estimation of surface areas – B.E.T method, Point B method and Benton and White method. Chemisorption: kinetics of chemisorptions and Heat of adsorption. Difference between physical and chemical adsorptions – Application of Adsorption.			
	Total Periods		75	

Te	xt Books
1	K.V. Raman, Group Theory, Tata McGraw - Hill Education (2004).
2	V.Ramakrishnan and M.S. Gopinathan, Group theory in chemistry, Vishal Publications, 1988.
3	A.S. Kunju, G. Krishnan, Group Theory and Its Applications in Chemistry, 2nd Edn, PHI
5	learning private Ltd (2015).
4	B.R. Puri, L.R. Sharma, M.S. Pathania, Principles of Physical Chemistry, Vishal Publishing Co.
	(2016).
5	K.J. Rajaram and J.C. Kuriakose, Kinetics and mechanism of chemical transformations,
5	Macmillan India Ltd (1993).
6	K.J. Laidler, Chemical Kinetics, Pearson (2009).
7	K. Veera Reddy, Symmetry and Spectroscopy of Molecules, New age international (2009).
8	Gurudeep Raj, Advanced Physical Chemistry, Goel Publishing House, (2014).
9	Gurudeep Raj, Surface Chemistry, Goel Publishing House, (2002).
Ret	ferences
1	F.A. Cotton., Chemical Applications of Group Theory 2nd Edn, Wiley Eastern Ltd (1989).

2	Capellos and B.H.J. Bielski, Kinetic systems, Willey interscience, Newyork, 1968.
3	P.W. Atkins., Physical Chemistry, 6th Edn, Oxford University Press, (1998).
4	Alan Vincent, Molecular Symmetry and Group theory – Programmed Introduction to chemical applications, Wiley, Newyork, 1977.
E-F	References
1	http://vlab.amrita.edu/?sub=2&brch=193∼=1013&cnt=1
2	http://unicorn.mcmaster.ca/teaching/4PB3/SymmetryLectureNotes2009-Vallance-Oxford-
	level2.pdf
3	http://cbc.arizona.edu/~salzmanr/480a/480ants/kinintro/kinintro.html
4	http://nptel.ac.in/courses/122101001

MOMEN EMPONEOUCH	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.						R	TO/TRAINING CONTINUED	
Programme	M.Sc Programme Code				PCI	H	Regulatio	ns	2022-2024
Department	Chemistry					Semeste	er		1
Course Code	se Code Course Name			Hours per Week Credit		Maximum		Marks	
			L	Т	Р	С	CA ES		E Total
22P1CHP01	Practical Calorimetric Estimation and Inorganic Qualitative Analysis-Practical				5	04	40	60	100
Course Objectives	 To acquire training in microscale experimental techniques. To acquire knowledge of the properties of ions and their compounds. To promote the students toward research activity and job opportunities 								

COs	COURSE OUTCOMES
CO 1	Students will learn how to conduct a process systematically and precisely.
CO 2	The qualitative analysis gives a type of mental training and develops a power of reasoning not equal to any other course in chemistry.
CO 3	The students will learn the nature, significance, and influence of errors and how they may best be avoided or minimized during the qualitative and quantitative examination of a chemical compound.
CO 4	Students will analyse the use of complexometric estimations.
CO 5	Students will evaluate the rare cations using qualitative analysis.
Pre-requisites	

	KNOWLEDGE LEVELS (KLs)					
1. Remembering, 2	1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing					
(2)2/1		PSO/ KL Mapping				
	2	correlation, 3-strong, 2-me				
COs	KLs	POs	KLs			
CO 1	4	PO 1	2			
CO 2	1	PO 2	1			
CO 3	3	PO 3	5			
CO 4	3	PO 4	5			
CO 5	2	PO 5	4			
PSO 1	3	PO 6	6			
PSO 2	2	PO 7	2			
PSO 3	2	PO 8	3			

	(3/	2/1 indic	ates the st		D Mapping relation, 3-s	strong, 2-med	ium, 1-weak)	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	1	1	2	2	3	1	1	2
CO2	2	3	1	1	1	1	2	1
CO3	2	1	1	1	2	1	2	3
CO4	1	1	3	3	2	2	1	1
CO5	1	1	2	2	1	3	1	1

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)					
COs Programme Specific Outcome (POs)						
COS	CO1	CO2	CO3	CO4	CO5	
PSO1	1	3	2	2	1	
PSO2	2	2	1	3	2	
PSO3	2	1	2	1	1	

	Content of the Syllabus						
Unit - I	Complexometric titrations	Hours	45				
	Estimation of Ca, Cu, Mg, Ni & Zn using complexometric titration						
	Qualitative Analysis	Hours	45				
	Qualitative analysis employing semi-micro methods and spot tests - mixtures of						
Unit - II	common cations and ions of the following less familiar elements molybe						
	tungsten, selenium, tellurium, cerium, thorium, titanium, zirc	conium, vanadio	um, uranium				
	and lithium.						
	Total Hours		90				

Text	Books
1	V.V. Ramanujam, Inorganic semi-micro qualitative analysis, The National Publishing Co., Ltd., Madras 2002.
Refe	rences
1	Vogel, Inorganic quantitative analysis, Pearson Education 2001.
E-Re	eferences
1	http://lib.hku.hk/Press/9622092128.pdf
2	http://www.kvsunjuwan.com
3	http://science-blogs.ucoz.com/resources/notes/msc/pract1/CationGuide.pdf

HOURH EMPONEMICAL	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.							R	ISO 8001.2008	
Programme	M.Sc	Programme Code			PC	H	Regulatio	ns 2	2022-2024	
Department	Cl	hemistry				Semester	•		1	
Course Code	Course Name		Hours per Week		Credit	Maximum Marks		Marks		
			L	Т	Р	С	CA	ESE	Total	
22P1CHP02	Practical Qualitative Analysis of Organic Mixture and Chromatographic Techniques-Practical				5	04	40	60	100	
Course Objectives	2. It also giv	 The objective of this lab is to provide hands-on opportunities to apply the knowledge of chemical reaction in functional group analysis. It also gives hands-on training to synthesize organic compounds via a variety of organic reactions. To promote the students towards research activity and job opportunities. 								
COs		C	OUR	SE	OUT	COMES				

COs	COURSE OUTCOMES
CO 1	Students can able to investigate and report an unknown compound systematically.
CO 2	Students will be known to synthesize, recrystallize, and findamelting point of an organic compound. It will help them to carry out their research in the future.
CO 3	Students can apply knowledge to identifying various functional groups.
CO 4	Students will analyze the various separation methods.
CO 5	Students can evaluate different binary organic mixtures.
Pre-requisites	

	KNOWLEDGE LEVELS (KLs)									
1. Remembering,	1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing									
	CO / PO / PSO/ KL Mapping									
(3/2/1 i	ndicates the strength of c	orrelation, 3-strong, 2-mo	edium, 1-weak)							
COs	COs KLs POs KLs									
CO 1	4	PO 1	2							
CO 2	1	PO 2	1							
CO 3	3	PO 3	5							
CO 4	3	PO 4	5							
CO 5	2	PO 5	4							
PSO 1	3	PO 6	6							
PSO 2	2	PO 7	2							
PSO 3	2	PO 8	3							

	CO / PO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)									
COs	COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8									
CO1	1	1	2	2	3	1	1	2		
CO2	2	3	1	1	1	1	2	1		
CO3	2	1	1	1	2	1	2	3		
CO4	1	1	3	3	2	2	1	1		
CO5	1	1	2	2	1	3	1	1		

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)									
COs Programme Specific Outcome (POs)										
COS	CO1	CO2	CO3	CO4	CO5					
PSO1	1	3	2	2	1					
PSO2	2	2	1	3	2					
PSO3	2	1	2	1	1					

	Content of the Syllabus						
	Qualitative analysis of a binary mixture of organic compounds:	Hours	45				
Unit - I	Preliminary pilot analysis, pilot report, bulk separation, systematic analysis of each component inclusive of preliminary identification, confirmatory tests, derivative preparation, and recording melting point/boiling point of components.						
	Chromatographic techniques	Hours	45				
Unit - II	Thin layer chromatography and Paper chromatography-step-by-step procedures- Retention factor-Uses						
	Total Hours		90				

Text book	s					
1	Antony J. Hannaford, Austin R. Tatchell, Brian S. Furniss, Peter W.G. Smith, Vogel's					
1	Text Book of practical organic chemistry, Pearson Education (2006).					
Reference	References					
1	V. Venkateshwaran, R. Veerasamy, A. R. Kulandaivelu, Basic principles of practical					
	chemistry, Sultan Chand &Sons,New Delhi, 2016					

E-References						
1	http://www.chem.uwimona.edu.jm/lab_manuals/c10expt25.html					
2	http://vlab.amrita.edu/?sub=2&brch=191∼=345&cnt=1					
3	http://amrita.olabs.edu.in/?sub=73&brch=8∼=116&cnt=1					

HONEN ENDONEDNICH	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.							EN	ISO BOI 2008	
Programme	M.Sc Programme Code PCH Regulations						2022-2024			
Department	Chemistry Semester						1			
Course Code	Course Name		Hours per Week		Credit	Maximum Marks		m Marks		
				Т	Р	С	CA	ES	SE Total	
22P1CHE01	Elective: Nanoscience and Nanotechnology			-	-	4	25	7.	5 100	
Course		1. To introduce the	stude	ents to	o the	world of n	anotechn	olog	у.	
Objectives	2. To enr	2. To enrich the knowledge of students in novel synthetic methods to prepare nanoparticles.								

COs	COURSE OUTCOMES
CO 1	Students will acquire knowledge on various synthetic methods of nanoparticles and techniques to characterize them.
CO 2	Students will be able to understand various types of nanoparticles and their properties.
CO 3	Students learn about the promising applications of nanotechnology.
CO 4	Students will analyse the properties of various dimensional nanoparticles.
CO 5	Students will evaluate the recent advancements in nanotechnology.
Pre-requisites	

	KNOWLEDGE LEVELS (KLs)									
1. Remembering, 2	1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing									
	CO / PO / PSO/ KL Mapping									
(3/2/1 in	dicates the strength of co	prrelation, 3-strong, 2-me	edium, 1-weak)							
COs/PSOs	COs/PSOs KLs POs KLs									
CO 1	4	PO 1	2							
CO 2	1	PO 2	1							
CO 3	3	PO 3	5							
CO 4	3	PO 4	5							
CO 5	2	PO 5	4							
PSO 1	3	PO 6	6							
PSO 2	2	PO 7	2							
PSO 3	2	PO 8	3							

	CO / PO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
COs	COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8										
CO1	1	1	2	2	3	1	1	2			
CO2	2	3	1	1	1	1	2	1			
CO3	2	1	1	1	2	1	2	3			
CO4	1	1	3	3	2	2	1	1			
CO5	1	1	2	2	1	3	1	1			

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)					
COs	Programme Specific Outcome (POs)					
COS	C01	CO2	CO3	CO4	CO5	
PSO1	1	3	2	2	1	
PSO2	2	2	1	3	2	
PSO3	2	1	2	1	1	

	Content of the Syllabus					
	Introduction to Nanoscience	Hours	15			
	Introduction, history, nanoscale &nanotechnology	, nanotech	generation-			
Unit - I	nanoscience, nanocomposites, zero dimensional nanon	naterials: meta	l and metal			
Omt - I	oxide nanoparticles, one dimensional nanomaterial nano	ostructures: na	nowires and			
	nanorods, - two dimensional materials nanostructures: thi	n films - three	dimensional			
	nanomaterials: Carbon fullerenes and carbon nanotubes.					
Unit - II	Synthesis of Nanomaterials	Hours	15			
	Physical methods- Physical Vapour Deposition (PVD). C	hemical metho	ds -Chemical			
	precipitation and Sol-gel synthesis; Chemical vapor	ur deposition	(CVD) and			
	Thermolysis routes, Microwave heating synthesis cha	emical Reduct	tion method,			
	Hydrothermal method, Solvothermal method, Phot	ochemical sy	nthesis and			
	electrochemical synthesis.					
		TT	1.5			
	Characterizations of nanomaterials	Hours	15			
	X-ray Diffraction (XRD), Photo Electron Spectroscopy (XPS). Thermal gravimetric					
Unit - III	analysis (TGA), Differential Scanning Calorimetry (DSC), Electron Microscopy:					
	Scanning Electron Microscopy (SEM), Energy-dispersive X-ray					
	analysis EDAX, High Resonance Transmission Electron Microscopy (HR-TEM).,					
	Atomic Force Microscopy (AFM).					
	Properties and Applications of Nanoparticles	Hours	15			

	Size dependence of Properties - Chemical Reactivit	y – Solubility	- Optical			
	properties - surface plasmon resonance, Magnetic properties - size dependent					
Unit -IV	properties such as coercivity and saturation magnetization	on. Applications	s: Medicine,			
	Nanoelectronics, supercapacitorsbatteries, environmental	protection, for	od and			
	agriculture, energy, and nanomaterial-based products. Risks of nanomaterials.					
	Nano biomaterials	Hours	15			
	Introduction: Biological building blocks - size of building blocks and nanostructures					
Unit - V	- protein nanoparticles. Nucleic Acids - DNA Double Nanowire, Genetic code and					
	protein synthesis - Biological nanostructures - Multi	layer films. B	siopolymers,			
	Biomaterials.					
	Total Hours		75			

Text Bo	poks
1.	Mark Ratner, Daniel Ratner, Nanotechnolgy, Pearson Education, Inc. 2007
2.	G.SchmidEds, Nanoparticles, Wiley-VCH, 2004.
3.	G.HodesEds, Electrochemistry of Nanomaterials, Wiley-VCH, 2001.
4.	M.Kohler, W.Fritzsche, Nanotechnology, Wiley-VCH, 2004
Referen	nces
1.	K.L.Choy, Process principles and applications of novel and cost- effective ESAVD based
	methods, World Scientific Publishing, Singapore, 2002
2.	A.Jones and M.Mitchell, Nanotechnology-Commercial Opportunity, Evolution Capital Ltd.
	London, 2001.
3.	Mick Wilson, Kannangara, Geoff Smith, Michelle Simmons and Burkhard Raguse,
	Nanotechnology basic science and emerging technologies, overseas press
4.	Charles P. Poole, Jr., Frank J. Owens, Introduction to Nanotechnology, Wiley reprint 2012
E-Refe	rences
1.	nptel.ac.in/courses/103103033/module9/lecture1.pdf
2.	http://folk.ntnu.no/fredrol/Nanomaterials%20and%20Nanochemistry.pdf
3.	https://www.ceitec.eu/nanoparticles-for-biomedical-applications/f33079
4.	nptel.ac.in/courses/103103033/module9/lecture1.pdf
5.	http://folk.ntnu.no/fredrol/Nanomaterials%20and%20Nanochemistry.pdf

HONEN ENDONEDNICH	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.					DR	CENTURED ISO 90012008		
Programme	M.Sc	Programme Code			PC	H	Regulati	ons	2022-2024
Department	Chemistry			Semester				1	
Course Code	Ce	ourse Name		ours Wee	s per ek	Credit	Max	imu	m Marks
			L	Т	Р	С	CA	ES	E Total
22P1CHE02	Elective: Instrumental N	Methods of Analysis	4			04	25	7:	5 100
Course Objectives	 To enable the students to handle instruments. Acquire the fundamentals principles of spectroscopic techniques. Enhance the knowledge in thermo electro-analytical methods. 								

COs	COURSE OUTCOMES	
CO 1	Students will understand the fundamentals of molecular spectroscopy.	
CO 2	Students will learn about the concepts of electronic spectroscopy.	
CO 3	Students will apply their knowledge in absorption and emission spectroscopy.	
CO 4	Students will analyze the various electro analytical methods.	
CO 5	Students can evaluate the thermal stability of various materials using TGA.	
Pre-requisites		

	KNOWLED	OGE LEVELS (KLs)		
1. Remembering, 2.	Understanding, 3. Apj	plying, 4. Analyzing, 5. Eval	uating, 6. Synthesizing	
(3/2/1 ind		PSO/ KL Mapping orrelation, 3-strong, 2-medi	um, 1-weak)	
COs/PSOs KLs POs KLs				
CO 1	4	PO 1	2	
CO 2	1	PO 2	1	
CO 3	3	PO 3	5	
CO 4	3	PO 4	5	
CO 5	2	PO 5	4	
PSO 1	3	PO 6	6	
PSO 2	2	PO 7	2	
PSO 3	2	PO 8	3	

	CO / PO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	1	1	2	2	3	1	1	2
CO2	2	3	1	1	1	1	2	1
CO3	2	1	1	1	2	1	2	3
CO4	1	1	3	3	2	2	1	1
CO5	1	1	2	2	1	3	1	1

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)					
COs	Programme Specific Outcome (POs)					
COS	CO1	CO2	CO3	CO4	CO5	
PSO1	1	3	2	2	1	
PSO2	2	2	1	3	2	
PSO3	2	1	2	1	1	

	Content of the Syllabus					
	Fundamentals of spectroscopy	Hours	15			
Unit - I	Electromagnetic spectrum: Electromagnetic radiation - p	roperties, wave	e parameters			
	interaction of light with matter - types of spectroscopy: A	Atomic & Mol	ecular			
	spectroscopy -Absorption and Emission spectra.					
	UV And IR spectroscopic techniques	Hours	15			
	UV-Visible spectroscopy- Principle, Electronic tr	ransitions, ch	romophores,			
Unit - II	auxochromes, the solvent effect on absorption spectra, instrumentation-detectors-					
	Applications. Infrared spectroscopy-principle, polyatomic and diatomic molecules,					
	sample handling, factors affecting vibrations. instrumentation- detector and recorders					
	Applications.					
Unit - III	Atomic absorption and emission	Hours	15			
	spectroscopic techniques					
	Flame photometry, Atomic Absorption Spectroscopy	(AAS): Prince	iple, theory,			
	instrumentation and application. Luminescence Sp	bectroscopy,	Fluorescence			
	Spectroscopy: Principle, theory, instrumentation and appli	cation.Quenchi	ng,			
	instrumentation and applications					
	Electro analytical methods	Hours	15			

	Total Hours			
Unit - V	Principles and instrumentation thermo gravimetric analysis (TGA) and differential gravimetric analysis (DTA) - characteristics and curves - factors affecting TGA and DTA curves- calcium oxalate monohydrate and silver nitrate.			
	Thermo analytical methods	Hours	15	
	Illkovicequation (derivation not needed) and its significance -Chrono potentiometry basic principles, applications and advantages.			
Unit - IV	Polarography-principle-concentrationpolarization-droppingmercuryelectrode- advantage and disadvantage - convection, migration and diffusion currents –			

Text	Books
1	Gopalan. R, Elements of analytical chemistry, Sultan Chand, 2009.
2	Kaur, Instrumental methods of chemical analysis.
Refe	rences
1	Khopkar S.M, Analytical Chemistry, New Age International, 2006.
2	Skog.A and West .M, Fundamentals of analytical chemistry, Saunders College Publications, 2004.
3	Sharma B.K, Instrumental methods of chemical analysis God Publications, 2007.
4	Usharani. S, Analytical Chemistry, Macmillan, 2008.

NONEN EMPONERIES	VIVEKAN	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.								
Programme	M.Sc	Programme Code			PCF	I	Regulatio	ns	2022-2024	
Department	Cl				Semester			2		
Course Code	Course Name		Hours per Week			Credit	Maximum M		Marks	
				Т	Р	C	CA	ES	E Total	
22P2CH04	CORE PAPER Organic React	5			05	25	75	5 100		
Course		1. To enrich the student's knowledge in the field of reactions and reagents involved i organic chemistry.								
Objectives	2. To impart	knowledge in unders arri		•		action con oduct.	ditions and	mec	hanisms to	

COs	COURSE OUTCOMES
CO 1	Students will learn the addition reactions taking place in the organic molecules.
CO 2	Students acquire deep knowledge on elimination reactions.
CO 3	Students can understand the path of different molecular rearrangements.
CO 4	Students will learn about the mechanism and applications of various naming reactions used in organic synthesis.
CO 5	Students will evaluate the role of reagents in organic synthesis.
Pre-requisites	

	KNOWLEDGE LEVELS (KLs)								
1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing CO / PO / PSO/ KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)									
COs/PSOs KLs POs KLs									
CO 1		4		PO 1		2			
CO 2	2 1 PO 2		CO 2 1		PO 2		1		
CO 3		3		PO 3		5			
CO 4		3		PO 4		5			
CO 5		2		PO 5		4			
PSO 1	1 3 PO 6		PO 6		6				
PSO 2	2		PSO 2			PO 7		2	
PSO 3	PSO 3 2			PO 8		3			
CO / PO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)									
COs PO1 PO2	PO3	PO4	PO5	PO6	PO7	PO8			

CO1	1	1	2	2	3	1	1	2
CO2	2	3	1	1	1	1	2	1
CO3	2	1	1	1	2	1	2	3
CO4	1	1	3	3	2	2	1	1
CO5	1	1	2	2	1	3	1	1

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
COs	Programme Specific Outcome (POs)										
0.08	C01	CO2	CO3	CO4	CO5						
PSO1	1	3	2	2	1						
PSO2	2	2	1	3	2						
PSO3	2	1	2	1	1						

Content of the Syllabus									
	Addition reactions	Hours	15						
	Addition across C-C multiple bonds – Electrophillic, Nucleophillic, Free radicals,								
	orientation and reactivity - Addition of halogen and ni	trosyl chloride	to olefin.						
Unit - I	Hydration of olefins and acetylenes. Epoxidation, Hydrol	poroation, Hyd	roxylation,						
Umt - I	Michael addition and Brich reduction. Diels Alder reaction, 1,3-dipolar add								
	Carbenes, Nitrenes and their addition to double bond.	Simmon-Smit	h reaction,						
	Mannich, Stobbe, Darzen, Wittig, Wittig-Horner, Grigna	rd, and Benzo	in						
	condensation.								
	Elimination reactions	Hours	15						
Unit - II	Elimination reactions – Mechanism of E1, E2 and E1CB – stereochemistry of								
Umt - 11	elimination, Hofmann and Saytzeff rules - competition	between Elimi	nation and						
	substitution – Pyrolytic – Cis elimination, Chugaev reaction	n – Typical read	ctions such						
	as Dehydration, dehydrohalogenation, Hofmann degradatio	n, Cope elimina	ation –						
	Bredt's rule.								
	Molecular rearrangements	Hours	15						
	A detailed study of the mechanism of the following re-	arrangements.	Wagner –						
Unit - III	Meerwin, Demyanov, Dienone-Phenol, Favorski, Baeyer -	- Villiger, Wolf	ff, Stevens,						
	Von – Richter, Beckmann, Hoffmann, Curtius, Lossen,	Benzil-Benzilio	e acid						
	rearrangement, Kornblum Benzidine, Fries rearrangement,	reland.							
	Organic naming reactions and applications	Hours	15						

	A detailed study of the following naming reactions - Biginelli reaction, Hoeben -								
Unit - IV	Hoesch reaction, Vilsmeyer formylation, Bucherer reaction, Pauson - Khand								
	reaction, Heck reaction, Suzzuki, Stille, Sonogashira, Negi	shi, Cadiot–Ch	odkiewicz						
	coupling reactions. Huigens synthesis. Baylis-Hillman, Luc	che, Yamaguch	reaction.						
	Reagents for Organic synthesis	Hours	15						
	Aluminium chloride, Alumniumisopropoxide, N-Bromosuccinimide, OsO4, DCC,								
	NChlorosuccinimide, Diazomethane, Fenton's reagent, Hydrogen peroxide, Lead								
Unit - V	tetraacetate, Lithium aluminium hydride, Perbenzoic acid, Periodic acid, Seleniun								
	dioxide, Sodium borohydride, DDQ, Wilkinson catalyst, Gilman's Reagents, 1, 3								
	Dithiane, Trimethylsilyl halide.								
Total Hours									

Text Bo	ooks
1	Jerry March, Advanced organic chemistry - Reactions Mechanism and tructure, McGraw Hill Kogakusha Ltd., 1977.
2	S.H. Mukhergee and S.P. Singh, Reaction Mechanisms in Organic Chemistry, McMillan
	1976.
3	Raj K.Bansal, Organic Chemistry Reaction mechanisms, Hill Publishing Company Ltd
	2006
4	I.L. Finar, Organic chemistry, Vol. II. Pearson Education P Ltd 2011
Referen	nces
1	S. N. Sanyal, Reactions, Rearrangements and Reagents, Bharati Bhavan Publishers &
	Distributor 2011
2	V.K. Ahluwalia, Rakesh Kumar Parashar and R. K. Parashar, Organic Reaction
2	Mechanisms Narosa Publishing House 2002
E-Refe	rences
1	https //www.name-reaction.com/list
2	https //www.synarchive.com/named-reactions
L	

Moneth Endover	VIVEKANAN	IEN	TO NOTICE							
Programme	M.Sc	Programme Code			РСН		Regulat	ions	2022-2024	
Department	Chemistry			Semester					2	
Course Code	Course Name		Hours per Week			Credit	Maximum Marks		m Marks	
			L	Т	Р	С	CA	ES	E Total	
22P2CH05	CORE PAPER V: Chemical Bonding and Coordination Chemistry					05	25	7:	5 100	
Course Objectives	-	To impart knowledge on types of bonding in simple and complex molecules. To understand the concept of HOMO and LUMO, and their influence in bond formation.								

COs	COURSE OUTCOMES
CO 1	Students will acquire sound knowledge on bonding in inorganic molecules.
CO 2	Students will learn the theories, mechanism of complex formation and the electronic spectra of coordination complexes.
CO 3	Students will acquire knowledge about term symbols and its applications.
CO 4	Students will analyze the bioinorganic molecules in coordination chemistry.
CO 5	Students will evaluate the various coordination theories.
Pre-requisites	

	KNOWLEDGE LEVELS (KLs)										
1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing											
CO / PO / PSO/ KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)											
COs/PSOs	COs/PSOs KLs POs KLs										
CO 1	4	PO 1	2								
CO 2	1	PO 2	1								
CO 3	3	PO 3	5								
CO 4	3	PO 4	5								
CO 5	2	PO 5	4								
PSO 1	3	PO 6	6								
PSO 2	2	PO 7	2								
PSO 3	2	PO 8	3								

	CO / PO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		
CO1	1	1	2	2	3	1	1	2		
CO2	2	3	1	1	1	1	2	1		
CO3	2	1	1	1	2	1	2	3		
CO4	1	1	3	3	2	2	1	1		
CO5	1	1	2	2	1	3	1	1		

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)								
COs	Programme Specific Outcome (POs)								
COS	CO1	CO2	CO3	CO4	CO5				
PSO1	1	3	2	2	1				
PSO2	2	2	1	3	2				
PSO3	2	1	2	1	1				

	Content of the Syllabus							
	Chemical Bonding I Hours 15 Jonic hond Lattice energy and its determination Born Lande equation							
	Ionic bond - Lattice energy and its determination	-Born-Lande	equation -					
T	Application of Born-Haber type calculations - Size effective	cts - Ionic rad	ii - Factors					
Unit - I	affecting ionic radii - Lewis structure - VB theory. M	Iolecular orbit	al theory -					
	Symmetry and overlap - Molecular orbitals of diatomic a	and triatomic r	nolecules -					
	Walsh diagram of H2 - Ionization of diatomic molecules							
	Covalent Bonding and Molecular Structure Hours 1							
	Covalent bonding Formal charges-Limitations of octet	rule- Hybridi	zation and					
	geometry-VSEPR model of methane, ammonia, water, sili	con tetrafluorio	le, AX ₂ and					
	AX4 type, and some xenon compounds, Bent's rule - Fai	ilures of VBT-	MO theory					
Unit - II	Unit - II LCAO method-Molecular orbitals in homo nuclear diatomic molecules of oxyg beryllium, nitrogen and carbon, hetero nuclear diatomic molecules such as HCl, 1							
	and CO-HOMO and LUMO concepts in bonding.							
	Coordination sharmistar	Hours	15					
	Coordinationchemistry	Hours	15					

∐nit	t - III	Crystal field theory (CFT) - Crystal field splitting in o	ctahedral, tetra	ahedral and						
Om	ι - 111	square planar complexes - Crystal field stabilization energy and its applications -								
		Weak and strong fields - Pairing energy - Factors affecting the magnitude of crystal								
		field splitting. Jahn-Teller theorem – Limitations of CFT	- Molecular or	rbital (MO)						
		theory for octahedral, tetrahedral and square planar complexes - Types of pi-bonds-								
		pi-bonding and MO theory – Evidences for pi-bonding								
		Reaction Mechanism in Coordination complex	Hours	15						
		Stability of complexes, Thermodynamic and kinetic sta	ability-stability	constants						
		Substitution reactions-General mechanism-Schemes of or	ctahedral, tetra	hedral and						
Un	it - IV	square planar complexes-Trans effect-Theories of trans	effect-pi-bond	ling theory						
		and polarisation theory - Applications of trans effect-Cata	alysis by trans	ition metal						
		complexes, Hydrogenation of alkene-Wilkinson's catalyst,	Hydroformyla	tion - Oxo						
		process, Wacker process and Zieglar-Natta catalysis.								
		Electronic Spectra and Organometallics	Hours	15						
		Spectroscopic term symbols for dn ions-derivation of term	symbols and g	round state						
		term symbols-Energy level diagrams. Electronic spectra of complexes-Orgel								
Unit	t - V	diagram - interpretation of electronic spectra of d1 to d9-Tanabe-Sugano diagrams-								
Om	ι- ν	charge transfer spectra-Carbonyls Binuclear and tri nuclear carbonyls of iron -								
		preparation, properties, uses - Nature of M-CO bond in carbonyls - Nitrosyls-Nature								
		of M-NO bonding - Metallocenes Ferrocene, Cobaltocene-Preparation, Properties								
		and structure.								
		Total Hours		75						
Te	xt Books									
1	J. E. Hu	heey, E. A. Keiter and R. L. Keiter., Inorganic Chemistry, 4th	n Edn, Pearson	education						
	2006									
2	R. D. M	adan., Modern Inorganic Chemistry, Chand Publishers 2004								
Re	ferences									
1	C. N. B	anwell., Fundamentals of Molecular Spectroscopy, Mc Graw	Hill, Newyork	2001						
2	R. Char	ng., Basic principles of Spectroscopy, McGraw Hill Ltd., New	York, 1971							
E-]	Reference	S								
1	http //cł	nemed.chem.purdue.edu/genchem/topicreview/bp/ch8/vsepr.h	tml							
2	http//ww	ww.chem.iitb.ac.in/people/Faculty/prof/pdfs/L5.pdf								
		Signature of BOS	Chairman							

S CONDUNAL INCIDENT	VIVEZANANI		DTC	A NI		TENCES EO	DWOME	N	150 9001:2008	
HONEN ENDOWERNEN	VIVERAMANI	NANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.								
Programme	M.Sc	Programme Code		PCH Regulations				ons	2020-2022	
Department	Cł	nemistry		Semester				2		
Course Code	Course Name		Periods per Week		-	Credit	Maximu		ım Marks	
			L	Т	Р	С	CA	ESE	E Total	
22P2CH06	CORE PAPER VI: Quantum Chemistry and Thermodynamics		5			05	25	75	100	
Course Objectives	2. To e	 To impart knowledge in the field of Quantum chemistry with applications. To enable the students to acquire knowledge on statistical thermodynamics. 								

COs	COURSE OUTCOME
CO 1	Students will be able to identify wave functions using operators and recognize functions and values.
CO 2	Students will learn to perturbation and variation.
CO 3	Students can learn the concept of chemical potential, fugacity of gases, Activity and activity coefficient
CO 4	Students will learn the Objectives and various functions of Statistical thermodynamics
CO 5	Students acquire deep knowledge about the concept of non-equilibrium and applications
Pre-requisites	

-	KNOWLEI	DGE LEVELS (KLs)						
1. Remembering, 2.	Understanding, 3. Ap	plying, 4. Analyzing, 5. Evalu	ating, 6. Synthesizing					
CO / PO / PSO/ KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)								
COs/PSOs KLs POs k								
CO 1	4	PO 1	2					
CO 2	1	PO 2	1					
CO 3	3	PO 3	5					
CO 4	3	PO 4	5					
CO 5	2	PO 5	4					
PSO 1	3	PO 6	6					
PSO 2	2	PO 7	2					
PSO 3	2	PO 8	3					

	CO / PO Mapping										
	(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
COs	Os PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8										
CO1	1	1	2	2	3	1	1	2			
CO2	2	3	1	1	1	1	2	1			
CO3	2	1	1	1	2	1	2	3			
CO4	1	1	3	3	2	2	1	1			
CO5	1	1	2	2	1	3	1	1			

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)								
COs	Programme Specific Outcome (POs)								
008	CO1	CO2	CO3	CO4	CO5				
PSO1	1	3	2	2	1				
PSO2	2	2	1	3	2				
PSO3	2	1	2	1	1				

	Content of the Syllabus							
	Quantum Chemistry-IPeriods15							
	Quantum theory: Inadequacy of classical mechanics,	Black body	Radiation –					
	Experimental results of Black body radiation - Photoelectric effect - De - Broglie							
	equation – Heisenberg uncertainty principle – Compton eff	fect. Born's int	erpretation of					
	wave function. Operators and commutation relations, Eigen	functions and	Eigen values.					
Unit - I	Quantum mechanical postulates - Schrodinger equation an	d its solution to	o the problem					
	of a particle in one- and three-dimensional boxes, the ha	armonic oscilla	tor, the rigid					
	rotator and Hydrogen atom (Arriving solution for energy	y and wave fu	nction). The					
	origin of quantum numbers and their physical significance	– Probability of	listribution of					
	electrons. Approximation methods - Perturbation and Vari	ation methods	- application					
	of Variation method to Hydrogen and Helium atom.							
	Quantum Chemistry-II	Periods	15					
	Theory of chemical bonding - Born - Oppenheimer app	roximation – 1	LCAO – MO					
Unit - II	approximation for hydrogen molecule ion and Hydrogen	– Valence Bo	ond theory of					
	Hydrogen molecule. Concept of Hybridization - sp, sp ² and	d s ^{p3} hybridizat	tion – Huckel					
	Molecular orbital (HMO) theory for conjugated π - syste	m – applicatio	ons to simple					

	systems (Ethylene and butadiene) - Physical Significance	e of HMO coe	fficients. Self					
	consistent field approximation - Hartree and Hartree - H	Fock Self Cons	sistant field					
	theory – Slater type orbitals – Slater rules.							
	Thermodynamics - I	Periods	15					
	Thermodynamics of non-ideal systems - Concept of chemi	cal potential -	Gibbs-Duhem					
	equation - Variation of chemical potential with temperatu	re and pressure	e - Concept of					
Unit - III	fugacity of gases - Determination by graphical method a	and from equat	tion of state -					
Umt - 111	Variation of fugacity with temperature and pressure - Fu	gacity coefficie	ent - Activity					
	and activity coefficient - Variation of activity of	a gas with	pressure and					
	temperature.Determination of solvent activity by vapour p	pressure method	d and					
	Cryoscopic method.							
	Statistical Thermodynamics	Periods	15					
	Objectives of Statistical thermodynamics, concept of thermodynamical and							
	mathematical probabilities, Distribution of distinguishable and non distinguishable							
	particles. Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics Law -							
	comparisons. Partition Function – Translational, Vibrational, Rotational and Electronic							
Unit - IV	partition Functions. Thermodynamic Functions in terms of partition Function,							
	Statistical expression for equilibrium constant C. Calculation of Equilibrium Constant							
	from Partition function (isotopic exchange equilibria and dissociation of diatomic							
	molecules) Heat capacities of monoatomic crystals - Einstein s and Debye s theories of							
	heat capacities.							
	Irreversible Thermodynamics	Periods	15					
	Reversible and Irreversible process – Types of irreversibility of process. Postulates of							
	Non-Equilibrium thermodynamics. Entropy production	- heat flow	v and matter					
Unit - V	flow.Progogine's principle of minimum entropy productio	n. Forces, flux	es and Flows -					
	Entropy production of forces and fluxes. Linear laws - Phe	nomenological	law - Onsager					
	reciprocal relation - proof by Microscopic reversibility - H	Electro kinetic	phenomenon –					
	Diffusion. Non-Equilibrium stationary states and Application	ons – Peltier ef	fect.					
	Total Periods		75					

Text	Books							
1	Arun Bahl, B. S.Bahl, G. D.Tuli., Essentials of Physical Chemistry, Multicolour Revised Edn,							
1	S. Chand and Company Ltd, (2008).							
2	L. K. Nash., Chemical Thermodynamics, 2nd Edn, Addision Wesley Publishing (1976)							
3	P.W. Atkins., Physical Chemistry, 6th Edn, Oxford University Press, (1998)							
4	Gurudeep Raj, Advanced Physical Chemistry, Goel Publishing House, (2014).							
Refe	rences							
1	R. K. Prasad., Quantum Chemistry, Viva Books Private Ltd (2013).							
2	D. McQuarrie., Quantum Chemistry, Viva Books Private Limited (2013).							
3	A. K. Chandra., Introductory Quantum Chemistry, Tata McGraw Hill (1994).							
4	W. J. Moore., Physical Chemistry, Longmann's (1975).							
5	M.C. Gupta., Statistical Thermodynamics, Wiley Eastern Limited (1990)							
6	I. N. Levine, Quantum Chemistry, 4th Edn., Prentice Hall India, (1994).							
7	B. K. Sen., Quantum Chemistry Including Spectroscopy, Kalyani publishers (2004).							
8	S. Glasstone., Thermodynamics for Chemists - East-west Press Pvt.Ltd, (2002).							
9								
E-Re	eferences							
1	www.chemistryexplained.com							
2	http://unicorn.mcmaster.ca/teaching/4PB3/SymmetryLectureNotes2009-Vallance-Oxford-							
	level2.pdf							
3	http://cbc.arizona.edu/~salzmanr/480a/480ants/kinintro/kinintro.html							

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.

Programme	M.Sc	Programme Code		РСН			Regulati	ons	2022-202
Department	Cl	hemistry		Semester		1		2	
Course Code	Course Name			Hours per Week		Credit	Maximur		m Marks
Course Code	Cot	in be i vuille	L	Т	Р	С	CA E		E Total
22P2CHP03	Practical Inorganic Estin Complex Prepa Practical				5	04	40	60) 100
Course Objectives	 To acquire training in micro scale experimental techniques. To acquire knowledge on the properties of ions and their compounds. To educate the students about the complex formation reaction, influence of pH stability of complexes and application 								

COs	COURSE OUTCOMES
CO 1	Students will learn how to conduct a process systematically and precisely
CO 2	The qualitative analysis gives a type of mental training and develops a power of reasoning not equal to any other course in chemistry
CO 3	The students will learn the nature, significance, and influence of errors and how they may best be avoided or minimized during the qualitative and quantitative examination of a chemical compound
CO 4	Students will able to design and synthesize new complexes
CO 5	Students will able to carry out their research in future
Pre-requisites	

	KNOWLEDGE LEVELS (KLs)						
1. Remembering, 2	. Understanding, 3. App	lying, 4. Analyzing, 5. Ev	valuating, 6. Synthesizing				
		PSO/ KL Mapping					
(3/2/1 inc	(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)						
COs/PSOs	KLs	POs	KLs				
CO 1	4	PO 1	2				
CO 2	1	PO 2	1				
CO 3	3	PO 3	5				
CO 4	3	PO 4	5				
CO 5	2	PO 5	4				
PSO 1	3	PO 6	6				
PSO 2	2	PO 7	2				
PSO 3	2	PO 8	3				

	(3/2/	/1 indica	tes the stre		Mapping elation, 3-st	rong, 2-mediu	ım, 1-weak)		
COs	s PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8								
CO1	1	1	2	2	3	1	1	2	
CO2	2	3	1	1	1	1	2	1	
CO3	2	1	1	1	2	1	2	3	
CO4	1	1	3	3	2	2	1	1	
CO5	1	1	2	2	1	3	1	1	

	(3/2/1 indica		/ PSO Mapping correlation, 3-stro	ng, 2-medium	, 1-weak)		
COs	Programme Specific Outcome (POs)						
0.08	CO1	CO2	CO3	CO4	CO5		
PSO1	1	3	2	2	1		
PSO2	2	2	1	3	2		
PSO3	2	1	2	1	1		

	Content of the Syllabus		
	Organic Estimations and Spectral Interpretations	Hours	35
Unit - I	Iron and Magnesium, Iron and Nickel, Copper and Nickel,	Copper and Zin	nc
	Preparations	Hours	40
	Tris(thiourea)copper(I) chloride Bis(acetylacetanato) co	pper(II)	
Unit - II	Hexammine cobalt(III) chloride Sodium hexa nitro coba	ltate(III)	
	Potasiumtrioxalato aluminate (III) trihydrate		
	Chloropentammine cobalt(III) chloride Hexammine nickel	(II) chloride	
	Total Hours		75
References			
1	J. Mendham, R.C. Denney, J.D. Barnes, M.J.K. Thomas Chemical Analysis", 6th Edition, Pearson Education (20		oook ofQuantitative
2	V. Venkateswaran, R. Veeraswamy and A.R.Kulandaive Chemistry, New Delhi, S.Chand& Co, (1995)	elu, Basic Princ	iples ofPractical

E-References	
1	http://lib.hku.hk/Press/9622092128.pdf
2	http://www.kvsunjuwan.com
3	http://science-blogs.ucoz.com/resources/notes/msc/pract1/CationGuide.pdf

NONEK EMPOWERNENT	VIVEKA	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.							TOURDantade COTTINIO
Programme	M.Sc	Programme Code			PC	Н	Regulati	ons	2022-2024
Department	Chemistry			Semester				2	
Course Code	Course Name			Hours per Week Credit			Maximum Marks		
Course Code			L	Т	Р	С	CA	ES	E Total
22P2CHP04	Practical Organic Preparations and Estimation-Practical				5	04	40	6	0 100
Course Objectives	2. It also gives	stimation-Practical Image: Constraint of this lab is to provide hands-on opportunities to apply the knowled of chemical reaction in functional group analysis. It also gives hands-on training to synthesize organic compounds via a variety of organic reactions. 3. To promote the students towards research activity and job opportunities.						riety of	

COs	COURSE OUTCOMES
CO 1	Students can able to investigate and report an unknown compound systematically.
CO 2	Students will be known to synthesize, recrystallize and finding melting point of an organic compound. It will help them to carry out their research in future.
CO 3	Students can apply knowledge on identifying various functional groups.
CO 4	Students will analyze the various separation methods.
CO 5	Students can evaluate different binary organic mixtures.
Pre-requisites	

	KNOWLE	DGE LEVELS (KLs)	
1. Remembering,	2. Understanding, 3. Ap	plying, 4. Analyzing, 5. l	Evaluating, 6. Synthesizing
(3/2/1 ir		PSO/ KL Mapping correlation, 3-strong, 2-r	nedium, 1-weak)
COs/PSOs	KLs	POs	KLs
CO 1	4	PO 1	2
CO 2	1	PO 2	1
CO 3	3	PO 3	5
CO 4	3	PO 4	5
CO 5	2	PO 5	4
PSO 1	3	PO 6	6
PSO 2	2	PO 7	2
PSO 3	2	PO 8	3

	(3/2/	'1 indicat	tes the stre		Mapping lation, 3-st	rong, 2-mediu	ım, 1-weak)	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	1	1	2	2	3	1	1	2
CO2	2	3	1	1	1	1	2	1
CO3	2	1	1	1	2	1	2	3
CO4	1	1	3	3	2	2	1	1
CO5	1	1	2	2	1	3	1	1

	(3/2/1 indica	CO . tes the strength of	/ PSO Mapping correlation, 3-stro	ong, 2-medium	, 1-weak)				
COs		Programme Specific Outcome (POs)							
0.03	C01	CO2	CO3	CO4	CO5				
PSO1	1	3	2	2	1				
PSO2	2	2	1	3	2				
PSO3	2	1	2	1	1				

	Content of the Syllabus		
	Organic Estimations and Spectral Interpretations	Hours	35
Unit - I	Estimation of phenol, Estimation of aniline, Estimation of me	thyl ketone, Estin	nation of
Unit - I	glucose. Interpretation of IR and UV visible spectra of organic	e compounds (siz	k in each
	case)		
	Two stage preparations	Hours	40
Unit -	sym-Tribromobenzene from aniline (Bromination + Hydrolys	is) p-nitroaniline	from
II	acetanilide (Nitration + Hydrolysis) Benzanilide from benzop	henone (Beckma	nn
11	rearrangement) m-nitroaniline from nitrobenzene (Nitration +	Reduction) p-br	omo
	acetanlide from aniline (Acetylation + Bromination)		
	Total Hours		75
Text bo	oks		
1 A	ntony J. Hannaford, Austin R. Tatchell, Brian S. Furniss, Peter W	.G. Smith , Voge	el's Text
-	ook of practical organic chemistry, Pearson Education (2006).		
1			
Referei	ices		
	ices . Venkateshwaran, R. Veerasamy, A. R. Kulandaivelu, Basic pr	inciples of prac	tical

E-References

1	http://www.chem.uwimona.edu.jm/lab_manuals/c10expt25.html
2	http://vlab.amrita.edu/?sub=2&brch=191∼=345&cnt=1
3	http://amrita.olabs.edu.in/?sub=73&brch=8∼=116&cnt=1

HOMEN EMPONEEMENT	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.								VRheinland entrifico	
Programme	M.Sc	Programme	Code	e PCH Regulations					ns 2	022-2024
Department	(Chemistry					Semest	er		2
Course Code	C	Hours per Kourse Name Hours per Week Credit Maximum Marks							Aarks	
			L	Т	Р	С	CA	ESE	Total	
22P2CHE03	Elective: III Supramolecul	ar chemistry		4			03	25	75	100
Course Objectives	1. The fu 2. The co	s been designed indamentals of s p-receptor molec ipramolecular re	upramol cules and	ecul l mu	es. ltip	le re	cognition	s.		
COs			COUR	SE (ΟU	тсс	OMES			
CO 1	Interpret the Chemistry.	information at	oout var	ious	c	once	pts invol	ved in su	pramol	ecular
CO 2	Compare the c	lifferent model f	for the m	etal	lo o	rgan	ic framev	vorks.		
CO 3	Explain the metallorecepte	various co-re ors.	eceptor	mol	ecu	les	and m	ultiple rec	ognitic	ons in
CO 4	Examine the S	upramolecular 1	reactivity	y and	l th	eir c	atalytic a	ctivity.		
CO 5	Analyze the r And technolog	ole of supramol gy.	lecular c	hem	istr	y in	the deve	lopment of	f nanos	cience
Pre-requisites										
		KNOWLE	DGE LI	EVE	LS	(KI	Ls)			
1. Remember	ering, 2. Under	rstanding, 3. Aj	pplying,	4. A	na	lyzin	ig, 5. Eva	luating, 6.	Synthe	esizing
(3	3/2/1 indicates	CO / PO , the strength of			-			lium. 1-we	ak)	
COs/PSO		KLs		PC			8/		Ls	
CO 1		4		PC) 1				2	
CO 2	CO 2 1 PO 2 1									
CO 3 3 PO 3 5										
CO 4 3 PO 4 5										
CO 5		2		PC) 5				4	
PSO 1		3		PC	6				6	
PSO 2		2		PC	7				2	
PSO 3	PSO 3 2				PO 8 3					

	CO / PO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		
CO1	1	1	2	2	3	1	1	2		
CO2	2	3	1	1	1	1	2	1		
CO3	2	1	1	1	2	1	2	3		
CO4	1	1	3	3	2	2	1	1		
CO5	1	1	2	2	1	3	1	1		

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)								
COs		Progr	amme Specific Ou	tcome (POs)					
COS	CO1	CO2	CO3	CO4	CO5				
PSO1	1	3	2	2	1				
PSO2	2	2	1	3	2				
PSO3	2	1	2	1	1				

Content of the Syllabus										
	Concepts of Supramolecular Chemistry	Hours	15							
	Concepts and languages of supramolecular chemistry -	various types of	f non- covalent							
	interactions - hydrogen bonds, C-HX interaction	ons, halogen	bonds $-\pi -\pi$							
	interactions, non-bonded interactions - various types of molecular rea									
Unit - I	Crystal engineering of organic solids - hydrogen bor	nded supramol	ecular patterns							
	involving water / carboxyl / halide motifs - concepts	of different typ	es of synthons							
	based on non-covalent interactions - principles of o	crystal enginee	ring and non-							
	covalent synthesis – polymorphism and pseudopolymorphism – supramolecular									
	isomorphism / polymorphism – crystal engineering of pl	narmaceutical p	hases.							
	Metallo Organic Frameworks	Hours	15							
	M.O.F (Metallo Organic Frameworks) - organometallie	c systems – co	mbinations of							
Unit - II	different interactions to design molecular rods, triangle	es, ladders, net	works, etc. –							
	design of nanoporous solids - interligand hydrogen b	onds in metal	complexes -							
	implications for drug design – crystal engineering of NL	O materials, O	LED.							
	Co-receptor Molecules and Multiple Recognition	Hours	15							
Unit - III	Dinuclear and polynulclear metal ion cryptates - linear	ecognition of r	nolecular							
01111 - 111	length by ditopic co-receptors - heterotopic co-receptors - cyclophane receptors,									
	amphiphilic receptors and large molecular cages – multiple recognition metalloreceptors – supramolecular dynamics									
		T								
	Supramolecular Reactivity and Catalysis	Hours	15							

		Catalysis by reactive macrocyclic cation receptor molecules – catalysi anion receptor molecules – catalysis with cyclophane type	•								
Unit	t - IV	supramolecular metallocatalysis - cocatalysis - catalysis of synthetic	reactions –								
		biomolecular and abiotic catalysis. upramolecular chemistry in	solution –								
		cyclodextrin, micelles, dendrimers, gelators – classification and typical reactions –									
		applications									
		Supramolecular Devices Hours	15								
		Supramolecular devices and sensors – various types of supramolecular	devices - an								
		overview – supramolecular photochemistry – molecular and su	pramolecular								
		photonic devices - light conversion and energy transfer devices - n	nolecular and								
Unit	- V	supramolecular electronic devices - electronic conducting devices	– molecular								
		wires, modified and switchable molecular wires - molecular and su	pramolecular								
		ionic devices - tubular mesophases, molecular protonics - switching	ng devices –								
		electro-photo switch - ion and molecule sensors - role of supramolecul	lar chemistry								
		in the development of nanoscience and technology									
		Total Hours	75								
Text	Books										
1	G. R.	Desiraju and T. Steiner. 2001. The Weak Hydrogen Bond in Structural									
	Chem	istry and Biology. International Union of Crystallography.									
2	J. M.	Lehn. 1995. Supramolecular Chemistry. Wiley VCH.									
Refe	rences										
1	J. M.	Lehn. 1999. Transition Metals in Supramolecular Chemistry. John Wiley									
	and S	ons.									
2	G. R.	Desiraju. 1989. Crystal Engineering: The Design of Organic Solids.									
	Elsev	ier.									
3	G. A.	Jeffrey. 1997. Introduction to Hydrogen Bonding. Oxford University									
	Press	UK.									
4	Jonath	nan W. Steed and Jerry L. Atwood. 2009. Supramolecular Chemistry.									
4											
4	2nd e	dition. Wiley-Blackwell.									
	2nd eo	·									

HOWEN EMPOWERNEN	VIVEKANAN	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.								
Programme	M.Sc	Programme Code			PCI	H	Regulatio	ns	2022-2024	
Department	(Semeste	er		2		
Course Code	Course Name		Hours per Week Credit			Credit	Maximur		m Marks	
			L	Т	Р	С	CA	ES	E Total	
22P2CHE04	Elective: III Organic Spectroscopy					03	25	75	5 100	
Course Objectives		To enable the students to identify the organic compounds. Acquire the fundamentals an principles of spectroscopic techniques. Enhance the knowledge in mass, NMR, I spectroscopy.								

COs	COURSE OUTCOMES
CO 1	Students will understand the basic principles of UV visible spectroscopy.
CO 2	Students will learn about the basic concepts of IR spectroscopy.
CO 3	Students will apply their knowledge on interpretation of mass spectrum.
CO 4	Students will analyze the chemical shift in molecules using NMR.
CO 5	Students will evaluate the types of spectra.
Pre-requisites	

			KN	NOWLEDGE I	LEVELS ((KLs)				
1	1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing									
				CO/PO/PSO/		0				
		2/1 indica	ites the stre	ength of correla	ition, 3-st	rong, 2-mediu	im, I-weak)			
(COs/PSOs		KLs		POs		KL	2S		
	CO 1		4		PO 1		2			
	CO 2		1		PO 2		1			
	CO 3		3		PO 3		5			
	CO 4		CO 4		3		PO 4		5	
	CO 5		2		PO 5		4			
	PSO 1		3		PO 6		6			
	PSO 2		2		PO 7		2			
	PSO 3		2		PO 8		3			
				CO/PO Ma	apping	·				
	(3/2	/1 indicat	es the strer	ngth of correlat	ion, 3-stro	ong, 2-mediu	n, 1-weak)			
COs	PO1	PO2	PO3	PO4	PO4 PO5 PO6 PO7 PO8					
CO1	1	1	2	2	3	1	1	2		
CO2	2	3	1	1	1	1	2	1		

CO3	2	1	1	1	2	1	2	3
CO4	1	1	3	3	2	2	1	1
CO5	1	1	2	2	1	3	1	1

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)								
COs		Pro	Outcome (POs)	•					
COS	CO1	CO2	CO3	CO4	CO5				
PSO1	1	3	2	2	1				
PSO2	2	2	1	3	2				
PSO3	2	1	2	1	1				

	Content of the Syllabus								
	UV Visible Spectroscopy	Hours	15						
Unit - I	Frank-Condon principle, Types of electronic transitions, Ch	romophores &	Auxochromes,						
	absorption and intensity shifts, Types of absorption bands	s, Effect of ter	nperature and						
	solvent on the fineness of absorption band, conjugated dienes, Woodward - Fieser rules.								
	IR Spectroscopy	Hours	15						
Unit - II	Vibrational frequencies & factors affecting them, number of	fundamental v	ibrations,						
	selection rules, identification of functional groups, Finger l	Print Region, A	Applications of						
	IR spectroscopy								
	Mass Spectrometry	Hours	15						
	Principle - EI, CI & FAB - Base peak, isotopic peaks, metastable peak, parent peak,								
Unit - III	Fragmentation - Nitrogen, even electron rule and pattern, McLafferty rearrangement,								
	Retro – Diel's Alder reaction fragmentation pattern of hydrocarbons, alcohols, aldehydes								
	and ketones, phenols, ethers								
	NMR Spectroscopy	Hours	15						
	Basic principles of NMR experiments - Shielding and d	eshielding effe	cts- Chemical						
Unit - IV	Shift. Factors influencing chemical shift, splitting of si	gnals, Spin-Sp	oin coupling&						
	Coupling constant - Factors influencing Proton Chemica	al Shift & Pr	oton - Proton						
	Coupling constant, AX & AB spin system - Spin decoupling	g - Nuclear Ove	rhaust effect -						
	Chemical exchange. ¹³ C NMR chemical shift & factor affect	ing ¹³ C Chemic	al shift.						
	Identification of organic compounds	Hours	15						
Unit - V	Identification of organic molecules alcohols, aldehydes, k	etones, ethers,	hydrocarbons						
	esters using UV, IR, NMR and Mass spectroscopic technique	es.							
	Total Hours		75						

Text	Books
1	Finar. I.L, Organic Chemistry, Vol-I&II, Fifth Edition, ELBS Publication, 2006.
2	Sharma. Y.R, Elementary Organic Spectroscopy, Fifth Edition, S. Chand Publication, 2013.
3	Jag mohan, Organic Spectroscopy: Principles and Applications, Second Edition, Alpha Science International Ltd., Harrow, U.K.
Refe	rences
1	Dyer.J, Applications of Organic Spectroscopy, Prentice & Hall of India Pvt Ltd., NewDelhi, 1980.
2	Mukerjee.S.M&Singh.S.P, Organic Reaction Mechanism, McMillan India Ltd., Chennai, 1990.
3	Kemp. W, Organic Spectroscopy, Mcmillan Ltd., 2001.

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.

Programme	M.Sc	Programme Code		PCH Regulations			tions	2022-2024	
Department	Cł	nemistry				Semester	r		3
Course Code	Cou	urse Name	Hours per Week		Credit	Maximum		Marks	
				Т	Р	С	CA	ESE	E Total
22P3CH07	Core - VII Natural products, Pericyclic reactions, and Retro synthesis					05	25	75	100
Course Objectives	 To enable students to learn about the chemistry of natural products. To learn the concepts of pericyclic reactions. To learn the relation between the structure and physiological properties of chemicals. To learn the basic principles and various methods. 								

COs	COURSE OUTCOME
	Students can learn about the chemical properties and structure of organic
CO 1	compounds like terpenoids, alkaloids, steroids and flavones, etc derived from
	plant materials.
	Students can understand isolation, characterization and laboratory synthesis of
CO 2	natural products.
	Students can know the concept of HOMO and LUMO, and their influence in
CO 3	bond formation.
	Students study the nature of double-bonded compounds and the possible isomer
CO 4	arrived upon their rearrangement.
	The knowledge of students will be enriched with green chemistry and various
CO 5	types of eco-friendly reactions could be conducted on their own.
Pre-requisites	

KNOWLEDGE LEVELS (KLs)										
1. Remembering, 2	1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing									
CO / PO / PSO/ KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
COs KLs POs KI										
CO 1	4	PO 1	2							
CO 2	1	PO 2	1							
CO 3	3	PO 3	5							
CO 4	3	PO 4	5							

CO 5	2	PO 5	4
PSO 1	3	PO 6	6
PSO 2	2	PO 7	2
PSO 3	2	PO 8	3

				CO/P	O Mapping						
	(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8			
CO1	1	1	2	2	3	1	1	2			
CO2	2	3	1	1	1	1	2	1			
CO3	2	1	1	1	2	1	2	3			
CO4	1	1	3	3	2	2	1	1			
CO5	1	1	2	2	1	3	1	1			
		(3/2/1 in	dicates the		PSO Mappi correlation,		nedium, 1-wea	ak)			
ſ	COs			Progra	mme Specif	fic Outcome	(POs)				
, c	.08	(C O 1	CO2		CO3	CO4	CO5			
PSO	1		1	3		2	2	1			
PSO	2		2	2		1	3	2			
PSO	3		2	1		2	1	1			

	Content of the Syllabus						
	Terpenoids and Steroids	Hours	15				
Unit - I	Terpenes: classification,, structural elucidation and synthesis of α -pinene, camphor, zingiberene. Steroids: classification, structural elucidation of cholesterol (synthesis not required), stigmasterol (synthesis not required), structure and synthetic aspects of estrone and progesterone.						
	Alkaloids and Flavonoids	Hours	15				
Unit - II	Alkaloids: classification, structural elucidation and synthesis of papaverine, quinine, morphine and reserpine.Flavones: introduction and Baker-Venkatraman synthesis - Flavanol: synthesis of quercetin – Isoflavones: synthesis of daidzein.						
	Anthocyanins and Vitamins	Hours	15				
Unit - III	Introduction to anthocyanins – synthesis of anthocyanins. str applications - uric acid, purine derivatives and xanthine base watersoluble vitamins, structural elucidation of vitamin B6, vitamin K	s Vitamins: fat	and				
	Pericyclic Reactions and Photochemistry	Hours	15				
Unit - IV	Electrocyclic reactions (butadiene-cyclobutene system), cycl +2) and (2+2)) systems, sigmatropic and cheletropic reaction						

		molecular orbital and correlation diagrams, 1,3 and 1,5 - hydrogen shi	fts							
	Sigmatropic rearrangements: Claisen, Cope and oxy-Cope rearrangements.									
	Sigmatropic rearrangements: Claisen, Cope and oxy-Cope rearrangements. Photochemistry: cis-trans isomerization, buterno-buchi reaction, Norrish type I and									
	Photochemistry: cis-trans isomerization, buterno-buchi reaction, Norrish type I and type II reactions, di-pi methane rearrangement-photoreduction of ketones, barton's									
		reaction	1105, 02							
				15						
		Strategies for Organic Synthesis Hours								
		Retrosynthetic analysis: synthons and synthetic equivalents, functional	0							
		interconversion - disconnection approach – one group C-X, two group								
τ	J nit - V	group C-C disconnections - chemoselectivity, umpolungand amine syn								
		protection and deprotection : alcohols, carbonyls, carboxylic acids and								
		functional groups - reterosynthetic analysis: alternate synthetic routes	•	esis of						
		organic mono and bifunctional compounds via disconnection approach								
		stereochemical control of products: selective aldol and Michael reaction	ons							
-		Total Hours		75						
	t Books									
1	V.K.Ahluwa	alia,M.Kidwai,New trends in green chemistry,Second Edition,2007								
2	Arun Bahl a	and B.S.Bahl, Advaced organic chemistry, S.Chand and company, 2009								
3	T.W.Grahar	msalomons, CarigB.Fryhle,Organic chemistry,9th edition,Wiley.2011.								
4	Singh, Jagadamba and L.D.S .Yadav. Advanced Organic Chemistry.Meerut: Pragati									
4	Prakashan,	2010								
Refe	erences									
1	I.L. Finar or	rganic Chemistry, Vol. II, 5th Edition ELBS 1975								
2	O.P.Agarwa	al, Chemistry of Organic Natural products, Goel publication vol I & II								
3	M.G. Arora	, Organic Photochemistry and Pericyclic reaction, 2008								
4	C.H.Depuy	,O.SChampman Molecular reactions and Photo-chemistry, Prentice Hall,	1975							
5	B.B. Grill, N	M. R. Willis, Pericyclic reactions, Champan& Hall 1974.								
	Jonathan, C	Clayden, Nick Greeves, Stuart Warren. Organic Chemistry. New Y	ork: C	Dxford						
6	University I	Press, 2012								
ГD	eferences									
L-N	https://articl	les.mercola.com/sites/articles/archive/2017/08/28/terpenoids.aspx								
1	https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/pericycl.htm									
	https://www	v2.chemistry.msu.edu/faculty/reusch/virttxtjml/pericycl.htm								
1	_	v2.chemistry.msu.edu/faculty/reusch/virttxtjml/pericycl.htm regonstate.edu/mic/dietary-factors/phytochemicals/flavonoids								

HOMEN ENPOYERING	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.								
Programme	M.Sc	Programme Code			PC	CH	Regulation	ns	2022-2024
Department	Cl	nemistry	Semester			3			
Course Code	Course Name		Hours per Week Credit		Credit	Maximum		n Marks	
			L	Т	Р	С	CA	ES	E Total
22P3CH08	CORE PAPER Organometallic Spectroscopy at Chemistry		5			05	25	75	5 100
Course Objectives	To gain knowledge about Boron compounds, cages, chains and clusters. To learn elaborately in the field of solid state and bio-inorganic chemistry. To understand the working and application of various analytical tools to deduce crystal structure of solids.								

COs	COURSE OUTCOME
CO 1	Students have the knowledge of application and properties of non-aqueous solvents and formation of liquid and gaseous molecules.
CO 2	Students can able understand the commercial application of Organometallic Chemistry & catalysis.
CO 3	Students are enable to understand the basic of crystal structure, application of the analytical tools like XRD, AAS and PES tools in elucidating three dimensional structure of the inorganic molecules.
CO 4	Students can know the importance of biologically important materials in our body.
CO 5	Students will have enriched knowledge on porphyrin and other bioinorganic molecules.
Pre- requisites	

	KNOWLEDGE LEVELS (KLs)								
1. Remembering,	1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing								
CO / PO / PSO/ KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)									
COs KLs POs KLs									
CO 1	4	PO 1	2						
CO 2	1	PO 2	1						
CO 3	3	PO 3	5						
CO 4	3	PO 4	5						
CO 5	2	PO 5	4						
PSO 1	3	PO 6	6						
PSO 2	2	PO 7	2						
PSO 3	2	PO 8	3						

	CO / PO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)									
COs	COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8									
CO1	1	1	2	2	3	1	1	2		
CO2	2	3	1	1	1	1	2	1		
CO3	2	1	1	1	2	1	2	3		
CO4	1	1	3	3	2	2	1	1		
CO5	1	1	2	2	1	3	1	1		

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)						
COs Programme Specific Outcome (POs)							
COS	CO1	CO2	CO3	CO4	CO5		
PSO1	1	3	2	2	1		
PSO2	2	2	1	3	2		
PSO3	2	1	2	1	1		

	Content of the Syllabus								
	Boron compounds and Clusters Boron hydrides	Hours	15						
	Inorganic chains - rings - cages and clusters - catenation - heterocatenation - intercalation								
	chemistry - one dimensional conductor - isopolyanions - heteropolyanions - borazines -								
Unit - I	phosphazenes - phosphazene polymers - ring compounds of sulphur and nitrogen -								
	homocyclic inorganic systems - cages - boron cage compounds - metal clusters -								
	dinuclear clusters - trinuclear clusters - tetranuclear clusters - hexanuclear clusters -								
	structural prediction of organometallic clusters.								
	Organometallic Chemistry Hours 15								
	Carbon donors - Alkyls and Aryls-preparation and properties; Carbonyls -18 electron								
	rule, isolobal concept - application to structure of carbonyls (simple and polynuclear)								
Unit - II	II Nitrosyls - bridging and terminal nitrosyls, bent and linear nitrosyls; dinitrog								
complexes; Chain Carbon donors - Olefins, acetylene and allyl complexes - s									
	structure and bonding; Cyclic Carbon donors - Metallocene - synthesis, structure and								
	bonding (Ferrocene only).								
Unit - III	Catalysis	Hours	15						

Hydrogenation of olefins (Wilkinsons catalyst); hydroformylation of olefins using Cobal or Rhodium catalysts (oxo process); Oxidation of olefins to aldehydes and ketones (Wacker process); polymerization (Zeigler-Natta catalyst); Cyclo oligomerization of acetylene using Nickel catalyst (Reppe's catalyst); polymer bound catalysts. Solid state Chemistry Hours 15 Space lattice - unit cell- crystal systems- elements of symmetry- space groups-Miller indices- crystal analysis- XRD - rotating crystal method- powder method - packing of atoms and ions in solids- Electrical properties of solids – Band theory, semiconductors, super conductors, theory of super conductivity – defects in solids - solid state electrolytes magnetic properties of solids – dia, para, ferro, antiferro and ferrimagnetism. Unit - V Bio-inorganic Chemistry Hours 15 Porphyrin ring system - Metalloporphyrins - Haemoglobin and Myoglobin-structure and work functions - other oxygen carriers - Cytochromes: Structure and wor functions in respiration - Chlorophyll, structure - photo synthetic sequence - Sulphu proteins - (Non Haemo iron protein) - Copper oxidizes - Blue copper proteins Carboxyl peptidase A: Structure, function - Vitamin B12, In vivo and in vitro nitroge fixation - Molecular mechanism of ion transport across the membrane - Na and 1 ion pumps-Chelate therapy-cis-platin. Text Books U. Malik, G. D. Tuli and R. D. Madan., Selected topics in Inorganic Chemistry, 6th EdnS Chand & company Ltd., (2005). B. R. Puri, L. R. Sharma and K. C. Kalia., Principles of Inorganic Chemistry, S. Chand & Com						
Wacker process); polymerization (Zeigler-Natta catalyst); Cyclo oligomerization of acetylene using Nickel catalyst (Reppe's catalyst); polymer bound catalysts. Solid state Chemistry Hours 15 Space lattice - unit cell- crystal systems- elements of symmetry- space groups-Miller indices- crystal analysis- XRD - rotating crystal method- powder method - packing of atoms and ions in solids- Electrical properties of solids – Band theory, semiconductors, super conductors, theory of super conductivity – defects in solids - solid state electrolytes magnetic properties of solids – dia, para, ferro, antiferro and ferrimagnetism. Unit - V Bio-inorganic Chemistry Hours 15 Porphyrin ring system - Metalloporphyrins - Haemoglobin and Myoglobin-structure and work functions - other oxygen carriers - Cytochromes: Structure and wor functions in respiration - Chlorophyll, structure - photo synthetic sequence - Sulphu proteins - (Non Haemo iron protein) - Copper oxidizes - Blue copper proteins Carboxyl peptidase A: Structure, function - Vitamin B12, In vivo and in vitro nitroge fixation - Molecular mechanism of ion transport across the membrane - Na and 1 ion pumps-Chelate therapy-cis-platin. 75 Text Books U. Malik, G. D. Tuli and R. D. Madan., Selected topics in Inorganic Chemistry, 6th EdnS Chand & company Ltd., (2005). 10						
acetylene using Nickel catalyst (Reppe's catalyst); polymer bound catalysts. Solid state Chemistry Hours 15 Space lattice - unit cell- crystal systems- elements of symmetry- space groups-Miller indices- crystal analysis- XRD - rotating crystal method- powder method - packing of atoms and ions in solids- Electrical properties of solids – Band theory, semiconductors, super conductors, theory of super conductivity – defects in solids - solid state electrolytes magnetic properties of solids – dia, para, ferro, antiferro and ferrimagnetism. Unit - V Bio-inorganic Chemistry Hours 15 Porphyrin ring system - Metalloporphyrins - Haemoglobin and Myoglobin-structure and work functions - other oxygen carriers - Cytochromes: Structure and wor functions in respiration - Chlorophyll, structure - photo synthetic sequence - Sulphu proteins - (Non Haemo iron protein) - Copper oxidizes - Blue copper proteins Carboxyl peptidase A: Structure, function - Vitamin B12, In vivo and in vitro nitroge fixation - Molecular mechanism of ion transport across the membrane - Na and I ion pumps-Chelate therapy-cis-platin. Total Hours 75 Text Books U. Malik, G. D. Tuli and R. D. Madan., Selected topics in Inorganic Chemistry, 6th EdnS Chand & company Ltd., (2005).						
Solid state Chemistry Hours 15 Unit - IV Space lattice - unit cell- crystal systems- elements of symmetry- space groups-Miller indices- crystal analysis- XRD - rotating crystal method- powder method - packing of atoms and ions in solids- Electrical properties of solids – Band theory, semiconductors, super conductors, theory of super conductivity – defects in solids - solid state electrolytes magnetic properties of solids – dia, para, ferro, antiferro and ferrimagnetism. Unit - V Bio-inorganic Chemistry Hours 15 Porphyrin ring system - Metalloporphyrins - Haemoglobin and Myoglobin-structure and work functions - other oxygen carriers - Cytochromes: Structure and wor functions in respiration - Chlorophyll, structure - photo synthetic sequence - Sulphu proteins - (Non Haemo iron protein) - Copper oxidizes - Blue copper proteins Carboxyl peptidase A: Structure, function - Vitamin B12, In vivo and in vitro nitroge fixation - Molecular mechanism of ion transport across the membrane - Na and I ion pumps-Chelate therapy-cis-platin. 1 U. Malik, G. D. Tuli and R. D. Madan., Selected topics in Inorganic Chemistry, 6th EdnS Chand & company Ltd., (2005).						
Image: Space lattice - unit cell- crystal systems- elements of symmetry- space groups-Miller Image: Space lattice - unit cell- crystal systems- elements of symmetry- space groups-Miller indices- crystal analysis- XRD - rotating crystal method- powder method - packing of atoms and ions in solids- Electrical properties of solids – Band theory, semiconductors, super conductors, theory of super conductivity – defects in solids - solid state electrolytes magnetic properties of solids – dia, para, ferro, antiferro and ferrimagnetism. Unit - V Bio-inorganic Chemistry Hours 15 Porphyrin ring system - Metalloporphyrins - Haemoglobin and Myoglobin-structure and work functions - other oxygen carriers - Cytochromes: Structure and wor functions in respiration - Chlorophyll, structure - photo synthetic sequence - Sulphu proteins - (Non Haemo iron protein) - Copper oxidizes - Blue copper proteins Carboxyl peptidase A: Structure, function - Vitamin B12, In vivo and in vitro nitroge fixation - Molecular mechanism of ion transport across the membrane - Na and I ion pumps-Chelate therapy-cis-platin. 1 U. Malik, G. D. Tuli and R. D. Madan., Selected topics in Inorganic Chemistry, 6th EdnS Chand & company Ltd., (2005).						
Unit - IV indices- crystal analysis- XRD - rotating crystal method- powder method - packing of atoms and ions in solids- Electrical properties of solids – Band theory, semiconductors, super conductors, theory of super conductivity – defects in solids - solid state electrolytes magnetic properties of solids – dia, para, ferro, antiferro and ferrimagnetism. Unit - V Bio-inorganic Chemistry Hours 15 Viiit - V Bio-inorganic Chemistry Hours 15 Porphyrin ring system - Metalloporphyrins - Haemoglobin and Myoglobin-structure and work functions - other oxygen carriers - Cytochromes: Structure and wor functions in respiration - Chlorophyll, structure - photo synthetic sequence - Sulphu proteins - (Non Haemo iron protein) - Copper oxidizes - Blue copper proteins Carboxyl peptidase A: Structure, function - Vitamin B12, In vivo and in vitro nitroge fixation - Molecular mechanism of ion transport across the membrane - Na and I ion pumps-Chelate therapy-cis-platin. 1 U. Malik, G. D. Tuli and R. D. Madan., Selected topics in Inorganic Chemistry, 6th EdnS Chand & company Ltd., (2005).						
Unit - IV indices- crystal analysis- XRD - rotating crystal method- powder method - packing of atoms and ions in solids- Electrical properties of solids – Band theory, semiconductors, super conductors, theory of super conductivity – defects in solids - solid state electrolytes magnetic properties of solids – dia, para, ferro, antiferro and ferrimagnetism. Unit - V Bio-inorganic Chemistry Hours 15 Vinit - V Bio-inorganic Chemistry Hours 15 Porphyrin ring system - Metalloporphyrins - Haemoglobin and Myoglobin-structure and work functions - other oxygen carriers - Cytochromes: Structure and wor functions in respiration - Chlorophyll, structure - photo synthetic sequence - Sulphu proteins - (Non Haemo iron protein) - Copper oxidizes - Blue copper proteins Carboxyl peptidase A: Structure, function - Vitamin B12, In vivo and in vitro nitroge fixation - Molecular mechanism of ion transport across the membrane - Na and I ion pumps-Chelate therapy-cis-platin. 1 U. Malik, G. D. Tuli and R. D. Madan., Selected topics in Inorganic Chemistry, 6th EdnS Chand & company Ltd., (2005).						
Unit - IV atoms and ions in solids- Electrical properties of solids – Band theory, semiconductors, super conductors, theory of super conductivity – defects in solids - solid state electrolytes magnetic properties of solids – dia, para, ferro, antiferro and ferrimagnetism. Unit - V Bio-inorganic Chemistry Hours 15 Porphyrin ring system - Metalloporphyrins - Haemoglobin and Myoglobin-structure and work functions - other oxygen carriers - Cytochromes: Structure and wor functions in respiration - Chlorophyll, structure - photo synthetic sequence - Sulphu proteins - (Non Haemo iron protein) - Copper oxidizes - Blue copper proteins Carboxyl peptidase A: Structure, function - Vitamin B12, In vivo and in vitro nitroge fixation - Molecular mechanism of ion transport across the membrane - Na and I ion pumps-Chelate therapy-cis-platin. Text Books U. Malik, G. D. Tuli and R. D. Madan., Selected topics in Inorganic Chemistry, 6th EdnS Chand & company Ltd., (2005).						
atoms and ions in solids- Electrical properties of solids – Band theory, semiconductors, super conductors, theory of super conductivity – defects in solids - solid state electrolytes magnetic properties of solids – dia, para, ferro, antiferro and ferrimagnetism. Unit - V Bio-inorganic Chemistry Hours 15 Porphyrin ring system - Metalloporphyrins - Haemoglobin and Myoglobin-structure and work functions - other oxygen carriers - Cytochromes: Structure and wor functions in respiration - Chlorophyll, structure - photo synthetic sequence - Sulphu proteins - (Non Haemo iron protein) - Copper oxidizes - Blue copper proteins Carboxyl peptidase A: Structure, function - Vitamin B12, In vivo and in vitro nitroge fixation - Molecular mechanism of ion transport across the membrane - Na and I ion pumps-Chelate therapy-cis-platin. 1 U. Malik, G. D. Tuli and R. D. Madan., Selected topics in Inorganic Chemistry, 6th EdnS Chand & company Ltd., (2005).						
Imagnetic properties of solids – dia, para, ferro, antiferro and ferrimagnetism. Unit - V Bio-inorganic Chemistry Hours 15 Porphyrin ring system - Metalloporphyrins - Haemoglobin and Myoglobin-structure and work functions - other oxygen carriers - Cytochromes: Structure and wor functions in respiration - Chlorophyll, structure - photo synthetic sequence - Sulphu proteins - (Non Haemo iron protein) - Copper oxidizes - Blue copper proteins Carboxyl peptidase A: Structure, function - Vitamin B12, In vivo and in vitro nitroge fixation - Molecular mechanism of ion transport across the membrane - Na and D ion pumps-Chelate therapy-cis-platin. 75 Total Hours 75 I U. Malik, G. D. Tuli and R. D. Madan., Selected topics in Inorganic Chemistry, 6th EdnS Chand & company Ltd., (2005).						
Unit - V Bio-inorganic Chemistry Hours 15 Porphyrin ring system - Metalloporphyrins - Haemoglobin and Myoglobin-structure and work functions - other oxygen carriers - Cytochromes: Structure and wor functions in respiration - Chlorophyll, structure - photo synthetic sequence - Sulphu proteins - (Non Haemo iron protein) - Copper oxidizes - Blue copper proteins Carboxyl peptidase A: Structure, function - Vitamin B12, In vivo and in vitro nitroge fixation - Molecular mechanism of ion transport across the membrane - Na and I ion pumps-Chelate therapy-cis-platin. 75 Text Books I U. Malik, G. D. Tuli and R. D. Madan., Selected topics in Inorganic Chemistry, 6th EdnS Chand & company Ltd., (2005).						
1 Porphyrin ring system - Metalloporphyrins - Haemoglobin and Myoglobin-structure and work functions - other oxygen carriers - Cytochromes: Structure and wor functions in respiration - Chlorophyll, structure - photo synthetic sequence - Sulphu proteins - (Non Haemo iron protein) - Copper oxidizes - Blue copper proteins Carboxyl peptidase A: Structure, function - Vitamin B12, In vivo and in vitro nitroge fixation - Molecular mechanism of ion transport across the membrane - Na and I ion pumps-Chelate therapy-cis-platin. 1 U. Malik, G. D. Tuli and R. D. Madan., Selected topics in Inorganic Chemistry, 6th EdnS Chand & company Ltd., (2005).						
and work functions - other oxygen carriers - Cytochromes: Structure and wor functions in respiration - Chlorophyll, structure - photo synthetic sequence - Sulphu proteins - (Non Haemo iron protein) - Copper oxidizes - Blue copper proteins Carboxyl peptidase A: Structure, function - Vitamin B12, In vivo and in vitro nitroge fixation - Molecular mechanism of ion transport across the membrane - Na and I ion pumps-Chelate therapy-cis-platin. Total Hours 75 Text Books 1 U. Malik, G. D. Tuli and R. D. Madan., Selected topics in Inorganic Chemistry, 6th EdnS						
functions in respiration - Chlorophyll, structure - photo synthetic sequence - Sulphu proteins - (Non Haemo iron protein) - Copper oxidizes - Blue copper proteins Carboxyl peptidase A: Structure, function - Vitamin B12, In vivo and in vitro nitroge fixation - Molecular mechanism of ion transport across the membrane - Na and I ion pumps-Chelate therapy-cis-platin. Text Books 75 1 U. Malik, G. D. Tuli and R. D. Madan., Selected topics in Inorganic Chemistry, 6th EdnS Chand & company Ltd., (2005).						
Image: Protein						
Carboxyl peptidase A: Structure, function - Vitamin B12, In vivo and in vitro nitroge fixation - Molecular mechanism of ion transport across the membrane - Na and I ion pumps-Chelate therapy-cis-platin. Total Hours 75 U. Malik, G. D. Tuli and R. D. Madan., Selected topics in Inorganic Chemistry, 6th EdnS Chand & company Ltd., (2005).						
fixation - Molecular mechanism of ion transport across the membrane - Na and Lion pumps-Chelate therapy-cis-platin. Total Hours 75 Text Books 1 U. Malik, G. D. Tuli and R. D. Madan., Selected topics in Inorganic Chemistry, 6th EdnS Chand & company Ltd., (2005).						
ion pumps-Chelate therapy-cis-platin. Total Hours 75 Text Books 1 U. Malik, G. D. Tuli and R. D. Madan., Selected topics in Inorganic Chemistry, 6th EdnS Chand & company Ltd., (2005).						
Total Hours 75 Text Books 1 U. Malik, G. D. Tuli and R. D. Madan., Selected topics in Inorganic Chemistry, 6th EdnS Chand & company Ltd., (2005).						
Text Books 1 U. Malik, G. D. Tuli and R. D. Madan., Selected topics in Inorganic Chemistry, 6th EdnS Chand & company Ltd., (2005).						
1U. Malik, G. D. Tuli and R. D. Madan., Selected topics in Inorganic Chemistry, 6th EdnS Chand & company Ltd., (2005).						
1 Chand & company Ltd., (2005).						
1 Chand & company Ltd., (2005).						
2 B. R. Puri, L. R. Sharma and K. C. Kalia., Principles of Inorganic Chemistry, S. Chand & Co						
(2004).						
3 R. D. Madan., Modern Inorganic Chemistry, Chand Publishers (2004).						
4						
5						
References						
J. E. Huheey, E. A. Keiter and R. L. Keiter., Inorganic Chemistry, 4th Edn, Pearson education						
(2006).						
2 F. A. Cotton, G. Wilkinson., Advanced Inorganic Chemistry, 3rd Edn, John Wiley & Sons, Inc						

3	G. Raj., Advanced Inorganic Chemistry Vol. I & Vol. II, 6th Edn, Goel publishing house (1999).						
4	G. S. Manku., Theoretical Principles of Inorganic Chemistry, Tata McGraw -Hill Publishing						
-	Company Ltd., (Reprint 2001).						
E-Re	eferences						
1	global.oup.com/ushe/product/boron compounds-9780198502593						
2	2 https://www.nature.com > subjects						
3	https://www.chemie.uni-hamburg.de/ac/rehder/Lund_BioinorgChem_08.pdf						
	<u> </u>						
	Signature of BOS Chairman						

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS)

(ACTONOMOUS)	
Elayampalayam, Tiruchengode-637 205.	

DepartmentChemistrySemesterCourse CodeCourse Name $Hours per Week$ CreditMaximum Ma L TPCCAESE22P3CHP05Physical PracticalChemistry PracticalElectrical60440601.To apply the principles of Conductometry and Potentiometry to the samples.1.To apply the principles of Conductometry and Potentiometry to the samples.Objectives2.To develop laboratory skills 3.3.To the ability to work with instruments independently.COsCOURSE OUTCOMECO 1Students will understand the breadth and concepts of physical chemistry.CO 2Students will develop skills in procedures and instrumental methods applied analytical and practical tasks of physical chemistry.CO 3Students will plan, conduct, review and report the experiment.CO 4Students will evaluate the hydrolysis constant with time.														
Image: Course CodeCourse Name $Hours perWeekCreditMaximum Ma22P3CHP05Physical Chemistry ElectricalPracticalITPCCAESE22P3CHP05Physical Chemistry ElectricalPracticalI60440601.To apply the principles of Conductoretry and Potentiometry to thesamples.1.To apply the principles of Conductoretry and Potentiometry to thesamples.CourseObjectives2.To develop laboratory skills3.To the ability to work with instruments independently.COsCOURSE OUTCOMECO 1Students will understand the breadth and concepts of physical chemistry.CO 2Students will develop skills in procedures and instrumental methods appliedanalytical and practical tasks of physical chemistry.CO 3Students will plan, conduct, review and report the experiment.CO 4Students will analyze the possible errors in instrument based experiments.CO 5Students will evaluate the hydrolysis constant with time.$	22-2024	20	ons	Regulatio		H	PC			Programme Code	M.Sc	Programme		
Course NameWeekCreditMaximum Maximum Maxim	3			er	ste	Semes				Chemistry	Chemistry			
22P3CHP05Physical PracticalChemistry PracticalElectrical604406022P3CHP051.To apply the principles of Conductometry and Potentiometry to the samples.1.To apply the principles of Conductometry and Potentiometry to the samples.Course Objectives2.To develop laboratory skills 3.To the ability to work with instruments independently.COsCOURSE OUTCOMECO 1Students will understand the breadth and concepts of physical chemistry.CO 2Students will develop skills in procedures and instrumental methods applied analytical and practical tasks of physical chemistry.CO 3Students will plan, conduct, review and report the experiment.CO 4Students will analyze the possible errors in instrument based experiments.CO 5Students will evaluate the hydrolysis constant with time.	arks	m M	imur	Max	it	Credit	-			ourse Name	C	Course Code		
22P3CHP05Practical6044060Practical1. To apply the principles of Conductometry and Potentiometry to the samples.Objectives2. To develop laboratory skills3. To the ability to work with instruments independently.COURSE OUTCOMECO 1Students will understand the breadth and concepts of physical chemistry.CO 2Students will develop skills in procedures and instrumental methods applied analytical and practical tasks of physical chemistry.CO 3Students will plan, conduct, review and report the experiment.CO 4Students will analyze the possible errors in instrument based experiments.CO 5Students will evaluate the hydrolysis constant with time.	Total	SE	ES	CA		С	Р	Т	L		-			
Course Objectivessamples.2.To develop laboratory skills 3.3.To the ability to work with instruments independently.COsCOURSE OUTCOMECO 1Students will understand the breadth and concepts of physical chemistry.CO 2Students will develop skills in procedures and instrumental methods applied analytical and practical tasks of physical chemistry.CO 3Students will plan, conduct, review and report the experiment.CO 4Students will analyze the possible errors in instrument based experiments.CO 5Students will evaluate the hydrolysis constant with time.	100	60					22P3CHP05							
CO 1Students will understand the breadth and concepts of physical chemistry.CO 2Students will develop skills in procedures and instrumental methods applied analytical and practical tasks of physical chemistry.CO 3Students will plan, conduct, review and report the experiment.CO 4Students will analyze the possible errors in instrument based experiments.CO 5Students will evaluate the hydrolysis constant with time.	samples. 2. To develop laboratory skills													
CO 2Students will develop skills in procedures and instrumental methods applied analytical and practical tasks of physical chemistry.CO 3Students will plan, conduct, review and report the experiment.CO 4Students will analyze the possible errors in instrument based experiments.CO 5Students will evaluate the hydrolysis constant with time.		COURSE OUTCOME					COs							
CO 2analytical and practical tasks of physical chemistry.CO 3Students will plan, conduct, review and report the experiment.CO 4Students will analyze the possible errors in instrument based experiments.CO 5Students will evaluate the hydrolysis constant with time.		Students will understand the breadth and concepts of physical chemistry.					CO 1							
CO 4Students will analyze the possible errors in instrument based experiments.CO 5Students will evaluate the hydrolysis constant with time.	Students will develop skills in procedures and instrumental methods applied in analytical and practical tasks of physical chemistry.					CO 2								
CO 5 Students will evaluate the hydrolysis constant with time.	Students will plan, conduct, review and report the experiment.					CO 3								
	Students will analyze the possible errors in instrument based experiments.					CO 4								
Dre-requisites	Students will evaluate the hydrolysis constant with time.					CO 5								
												Pre-requisites		

	KNOWLEDGE LEVELS (KLs)						
1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing							
CO / PO / PSO/ KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)							
COs	KLs	POs	KLs				
CO 1	4	PO 1	2				
CO 2	1	PO 2	1				
CO 3	3	PO 3	5				
CO 4	3	PO 4	5				
CO 5	2	PO 5	4				
PSO 1	3	PO 6	6				
PSO 2	2	PO 7	2				
PSO 3	2	PO 8	3				

	CO / PO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	1	1	2	2	3	1	1	2
CO2	2	3	1	1	1	1	2	1
CO3	2	1	1	1	2	1	2	3
CO4	1	1	3	3	2	2	1	1
CO5	1	1	2	2	1	3	1	1

CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)						
COs Programme Specific Outcome (POs)						
005	CO1	CO2	CO3	CO4	CO5	
PSO1	1	3	2	2	1	
PSO2	2	2	1	3	2	
PSO3	2	1	2	1	1	

Content of the Syllabus									
	Electrical ExperimentsHours75								
	Conductometry: 1. Estimation of mixture of acids (HCl, CH3COOH Vs NaOH).								
2. i. Determination pKa – Ostwald's dilution law.									
	ii. Determination of solubility product - Kohlrausch's law.								
	3. Estimation of mixture of halides (KCl, KI Vs AgNO3	3).							
	4. Determination of hydrolysis constant (for aniline hydrochloride)								
	5. i. Saponification of ethyl acetate (Kinetics study).								
Unit - I	ii. Comparison of the relative strength of acetic acid and chloroacetic acid.								
	Potentiometry:								
	1. Estimation of mixture of acids (HCl, CH ₃ COOH Vs NaOH).								
	2. Determination of solubility product by								
	a) Galvanic cell method.								
	b) Concentration cell method.								
	3. Estimation of mixture of halides (KCl, KI Vs AgNO ₃).								
	4. Determination of E^0 of Zn / Zn ²⁺ and estimation of Zn ²⁺								
	5. Determination of hydrolysis constant (for aniline hydrochloride)								
Total Hours 75									
Text Books									
P.S. Sindhu	ı, Practicals in Physical Chemistry, 1 st Edition, Macmillan, India	a (2006).							

V. Venkateswaran, R. Veeraswamy and A. R. Kulandaivelu, Basic Principles of Practical Chemistry, New Delhi, S.Chand & Co, (1995).

References

B Viswanathan, P.S. Raghavan, Practical Physical Chemistry, Viva Books Private Limited, (2005).

E-References

http://nptel.ac.in/courses/Webcourse-contents/IISc-BANG/Material Science

http://www.cffet.net/sia-e/2_Pot_titr.pdf

MOREN ERNOVERNEN	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.							NCES FOR			
Programme	M.Sc	Programme Code			PC	CH	Regulatio	ns	2020-2022		
Department	Cl	hemistry				Semester		3			
Course Code	Сог	urse Name		urs Vee		Credit	Maximum Marks				
				Р	С	CA	ES	SE Total			
22P3CHE05	Elective-IV Physical meth	V nethods in Chemistry5042575				5 100					
Course Objectives	 To make the students to understand the principles of vibrational and rotational spectroscopy. To acquire knowledge in the field of UV-Vis spectroscopy and its application to organic chemistry. 										

COs	COURSE OUTCOME
CO 1	Students will learn about instrumental techniques in Microwave Spectroscopy
	that helps them incharacterizing new materials.
CO 2	Specialized and basic spectroscopic techniques are taught such as Infrared
	spectroscopy and Raman spectroscopy
CO 3	Students will learn about the theory of UV spectroscopy, Fluorescence
003	Spectroscopy and its applications
CO 4	Students will analyze theory and applications of Nuclear Magnetic
	Resonancespectroscopy and EPR spectroscopy. These topics help thestudents in
	understanding the basic principle and applications of different characterizing
	techniques
CO 5	The students gain more knowledge about the concepts of Mass, and Mossbauer
	techniques andhow to apply the learned concepts of these techniques forspectral
	interpretation. This helps to find out the structure of synthesized unknown
	organic compound.
Pre-requisites	

KNOWLEDGE LEVELS (KLs)					
1. Remembering, 2	1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing				
(3/2/1 in	CO / PO / PSO/ KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)				
COs KLs POs KLs					
CO 1	4	PO 1	2		

CO 2	1	PO 2	1
CO 3	3	PO 3	5
CO 4	3	PO 4	5
CO 5	2	PO 5	4
PSO 1	3	PO 6	6
PSO 2	2	PO 7	2
PSO 3	2	PO 8	3

		(3/2/1 indi	cates the st		O Mapping relation, 3-	strong, 2-me	lium, 1-wea	ak)
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	1	1	2	2	3	1	1	2
CO2	2	3	1	1	1	1	2	1
CO3	2	1	1	1	2	1	2	3
CO4	1	1	3	3	2	2	1	1
CO5	1	1	2	2	1	3	1	1

CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)					
COs Programme Specific Outcome (POs)				(POs)	
0.03	CO1	CO2	CO3	CO4	CO5
PSO1	1	3	2	2	1
PSO2	2	2	1	3	2
PSO3	2	1	2	1	1

	Content of the Syllabus				
	Microwave spectra	Hours	15		
	Introduction: Electromagnetic radiation, Interaction of light with matter, mechanism of				
	absorption & emission of radiation. Rotational, vibrational, and electronic				
Unit - I	Unit - I molecules; regions and representation of spectra. Micro wave Spectroscopy: D				
	molecules as rigid rotors: rotational energy levels, intensity of spectral lines, selection				
	rules, effect of isotopic substitution. Diatomic molecules as non-rigid rotors. Rotational				
	spectra of polyatomic molecules – Linear and Symmetric top molecule.				
Unit - II	Vibrational Spectra	Hours	15		

	Vibrational Spectroscopy: Vibrating diatomic molecule: en	ergy of diatomic	molecules as			
	simple harmonic and Anharmonic oscillator - energy levels, vibrational transitions,					
	selection rules; Diatomic vibrating rotator: Born-Oppenhein	ner approximatio	on,			
	vibrationrotational spectra, selection rules; P, Q, R branches	s. Vibrations of p	olyatomic			
	molecules: fundamental vibrations and its symmetry, norm	al modes of vibra	ation,			
	overtones and combination of bands.					
	Raman Spectroscopy: Rayleigh scattering, Raman Scatterin	g. Polarizability,	Polarization			
	of Raman lines, Rule of mutual, exclusion, Instrumentation	and applications				
	UV and fluorescence Spectroscopy	Hours	15			
	UV-spectroscopy: Theory, Instrumentation, selection rules,	Beer-Lamberts I	Law,			
	Electronic transitions, Characteristic absorption (λ_{max} and ϵ_r	nax) Conjugated d	louble bond -			
Unit - III	dienes, carbonyl compounds and aryl groups. Factors influe	encing absorption	l .			
	Fluorescence and phosphorescence, fluorescence quenching	g, concentration	quenching,			
	quenching by excimer and exciplex emission, fluorescence	quenching by excimer and exciplex emission, fluorescence resonance energy transfer				
	between photoexcited donor and acceptor systems (FRET).					
	NMR and ESR Spectroscopy	Hours	15			
	NMR Spectra: Theory, Instrumentation. Chemical shift - Fa	ectors affecting cl	 hemical shift			
	Shielding and deshielding mechanisms. Spin-spin coupling, Coupling constant – Geminal					
	and Vicinal coupling constant beteronuclear couplings Nu	clear Overhauser	effect			
Unit - IV	and Vicinal coupling constant, heteronuclear couplings, Nu Introduction to ¹³ C NMR ¹⁹ F NMR ³¹ P NMR and applicati					
Unit - IV	Introduction to ¹³ C NMR, ¹⁹ F NMR, ³¹ P NMR and application	ons of ¹ H NMR.				
Unit - IV	Introduction to ¹³ C NMR, ¹⁹ F NMR, ³¹ P NMR and application ESR Spectroscopy – Theory, derivative curves, g values, H	ons of ¹ H NMR. yperfine splitting	, Zerofield			
Unit - IV	Introduction to ¹³ C NMR, ¹⁹ F NMR, ³¹ P NMR and application ESR Spectroscopy – Theory, derivative curves, g values, H splitting, Kramersdegeneracy-Isotropic and anisotropic system	ons of ¹ H NMR. yperfine splitting	, Zerofield			
Unit - IV	Introduction to ¹³ C NMR, ¹⁹ F NMR, ³¹ P NMR and application ESR Spectroscopy – Theory, derivative curves, g values, H splitting, Kramersdegeneracy-Isotropic and anisotropic syst complexes.	ons of ¹ H NMR. yperfine splitting ems and Applica	, Zerofield tions in meta			
Unit - IV	Introduction to ¹³ C NMR, ¹⁹ F NMR, ³¹ P NMR and applicati ESR Spectroscopy – Theory, derivative curves, g values, H splitting, Kramersdegeneracy-Isotropic and anisotropic syst complexes. Mass Spectrometry and Mossbauer Spectroscopy	ons of ¹ H NMR. yperfine splitting ems and Applica Hours	, Zerofield tions in meta 15			
Unit - IV	Introduction to ¹³ C NMR, ¹⁹ F NMR, ³¹ P NMR and applicati ESR Spectroscopy – Theory, derivative curves, g values, H splitting, Kramersdegeneracy-Isotropic and anisotropic syst complexes. Mass Spectrometry and Mossbauer Spectroscopy Mass Spectrometry :Instrumentation, Molecular Formulae I	ons of ¹ H NMR. yperfine splitting ems and Applica Hours ndex (D.B.E), M	, Zerofield tions in meta 15 olecular ion			
Unit - IV	Introduction to ¹³ C NMR, ¹⁹ F NMR, ³¹ P NMR and application ESR Spectroscopy – Theory, derivative curves, g values, H splitting, Kramersdegeneracy-Isotropic and anisotropic syst complexes. Mass Spectrometry and Mossbauer Spectroscopy Mass Spectrometry :Instrumentation, Molecular Formulae I peak, base peak, metastable ions, Nitrogen rule, effect of iso	ions of ¹ H NMR. yperfine splitting ems and Applica Hours ndex (D.B.E), M ptopes, Rules for	, Zerofield tions in meta 15 olecular ion			
Unit - IV	Introduction to ¹³ C NMR, ¹⁹ F NMR, ³¹ P NMR and applicati ESR Spectroscopy – Theory, derivative curves, g values, H splitting, Kramersdegeneracy-Isotropic and anisotropic syst complexes. Mass Spectrometry and Mossbauer Spectroscopy Mass Spectrometry :Instrumentation, Molecular Formulae I	ions of ¹ H NMR. yperfine splitting ems and Applica Hours ndex (D.B.E), M ptopes, Rules for	, Zerofield tions in meta 15 olecular ion			
Unit - IV Unit - V	Introduction to ¹³ C NMR, ¹⁹ F NMR, ³¹ P NMR and application ESR Spectroscopy – Theory, derivative curves, g values, H splitting, Kramersdegeneracy-Isotropic and anisotropic syst complexes. Mass Spectrometry and Mossbauer Spectroscopy Mass Spectrometry :Instrumentation, Molecular Formulae I peak, base peak, metastable ions, Nitrogen rule, effect of iso	ions of ¹ H NMR. yperfine splitting ems and Applica Hours ndex (D.B.E), M ptopes, Rules for r fragmentation,	, Zerofield tions in meta 15 folecular ion			
	Introduction to ¹³ C NMR, ¹⁹ F NMR, ³¹ P NMR and application ESR Spectroscopy – Theory, derivative curves, g values, H splitting, Kramersdegeneracy-Isotropic and anisotropic syst complexes. Mass Spectrometry and Mossbauer Spectroscopy Mass Spectrometry :Instrumentation, Molecular Formulae I peak, base peak, metastable ions, Nitrogen rule, effect of iso fragmentation, Mclafferty rearrangement, retro Diels- Alder	ions of ¹ H NMR. yperfine splitting ems and Applica Hours ndex (D.B.E), M ptopes, Rules for r fragmentation, aldehydes, Keto	, Zerofield tions in meta 15 folecular ion			
	Introduction to ¹³ C NMR, ¹⁹ F NMR, ³¹ P NMR and application ESR Spectroscopy – Theory, derivative curves, g values, H splitting, Kramersdegeneracy-Isotropic and anisotropic syst complexes. Mass Spectrometry and Mossbauer Spectroscopy Mass Spectrometry :Instrumentation, Molecular Formulae I peak, base peak, metastable ions, Nitrogen rule, effect of iso fragmentation, Mclafferty rearrangement, retro Diels- Alder Fragmentation of hydrocarbons, alcohols, Phenols, Halides,	ions of ¹ H NMR. yperfine splitting ems and Applica Hours Index (D.B.E), M otopes, Rules for r fragmentation, aldehydes, Keto s of mass spectra	, Zerofield tions in meta 15 folecular ion nes, amines, of various			
	Introduction to ¹³ C NMR, ¹⁹ F NMR, ³¹ P NMR and applicati ESR Spectroscopy – Theory, derivative curves, g values, H splitting, Kramersdegeneracy-Isotropic and anisotropic syst complexes. Mass Spectrometry and Mossbauer Spectroscopy Mass Spectrometry :Instrumentation, Molecular Formulae I peak, base peak, metastable ions, Nitrogen rule, effect of iso fragmentation, Mclafferty rearrangement, retro Diels- Alder Fragmentation of hydrocarbons, alcohols, Phenols, Halides, nitriles, carboxylic acids, esters, Problems based on analysi	ions of ¹ H NMR. yperfine splitting ems and Applica Hours ndex (D.B.E), M otopes, Rules for r fragmentation, aldehydes, Keto s of mass spectra l on relative abun	, Zerofield tions in meta 15 folecular ion nes, amines, of various idance.			
	Introduction to ¹³ C NMR, ¹⁹ F NMR, ³¹ P NMR and application ESR Spectroscopy – Theory, derivative curves, g values, H splitting, Kramersdegeneracy-Isotropic and anisotropic systecomplexes. Mass Spectrometry and Mossbauer Spectroscopy Mass Spectrometry :Instrumentation, Molecular Formulae I peak, base peak, metastable ions, Nitrogen rule, effect of isof fragmentation, Mclafferty rearrangement, retro Diels- Alder Fragmentation of hydrocarbons, alcohols, Phenols, Halides, nitriles, carboxylic acids, esters, Problems based on analysis organic compounds Prediction of molecular formulae based	ions of ¹ H NMR. yperfine splitting ems and Applica Hours ndex (D.B.E), M otopes, Rules for r fragmentation, aldehydes, Keto s of mass spectra l on relative abun	, Zerofield tions in meta 15 folecular ion nes, amines, of various idance.			
	Introduction to ¹³ C NMR, ¹⁹ F NMR, ³¹ P NMR and application ESR Spectroscopy – Theory, derivative curves, g values, H splitting, Kramersdegeneracy-Isotropic and anisotropic syst complexes. Mass Spectrometry and Mossbauer Spectroscopy Mass Spectrometry :Instrumentation, Molecular Formulae I peak, base peak, metastable ions, Nitrogen rule, effect of iso fragmentation, Mclafferty rearrangement, retro Diels- Alder Fragmentation of hydrocarbons, alcohols, Phenols, Halides, nitriles, carboxylic acids, esters, Problems based on analysi organic compounds Prediction of molecular formulae based Mossbauer Spectroscopy: Line width - Isomer shift - Quadr	ions of ¹ H NMR. yperfine splitting ems and Applica Hours ndex (D.B.E), M otopes, Rules for r fragmentation, aldehydes, Keto s of mass spectra l on relative abun	, Zerofield tions in meta 15 folecular ion nes, amines, of various idance.			
	Introduction to ¹³ C NMR, ¹⁹ F NMR, ³¹ P NMR and applicati ESR Spectroscopy – Theory, derivative curves, g values, H splitting, Kramersdegeneracy-Isotropic and anisotropic syst complexes. Mass Spectrometry and Mossbauer Spectroscopy Mass Spectrometry :Instrumentation, Molecular Formulae I peak, base peak, metastable ions, Nitrogen rule, effect of iso fragmentation, Mclafferty rearrangement, retro Diels- Alder Fragmentation of hydrocarbons, alcohols, Phenols, Halides, nitriles, carboxylic acids, esters, Problems based on analysi organic compounds Prediction of molecular formulae based Mossbauer Spectroscopy: Line width - Isomer shift - Quada interactions, Structural elucidation of iron tin complexes.	ions of ¹ H NMR. yperfine splitting ems and Applica Hours ndex (D.B.E), M otopes, Rules for r fragmentation, aldehydes, Keto s of mass spectra l on relative abun	, Zerofield tions in meta 15 folecular ion nes, amines, of various idance. is - Magnetic			
Unit - V	Introduction to ¹³ C NMR, ¹⁹ F NMR, ³¹ P NMR and applicati ESR Spectroscopy – Theory, derivative curves, g values, H splitting, Kramersdegeneracy-Isotropic and anisotropic syst complexes. Mass Spectrometry and Mossbauer Spectroscopy Mass Spectrometry :Instrumentation, Molecular Formulae I peak, base peak, metastable ions, Nitrogen rule, effect of iso fragmentation, Mclafferty rearrangement, retro Diels- Alder Fragmentation of hydrocarbons, alcohols, Phenols, Halides, nitriles, carboxylic acids, esters, Problems based on analysi organic compounds Prediction of molecular formulae based Mossbauer Spectroscopy: Line width - Isomer shift - Quada interactions, Structural elucidation of iron tin complexes.	ions of ¹ H NMR. yperfine splitting ems and Applica Hours ndex (D.B.E), M otopes, Rules for r fragmentation, aldehydes, Keto s of mass spectra l on relative abun rupole interaction	, Zerofield tions in meta 15 folecular ion nes, amines, of various idance. is - Magnetic 75			

2	Gurudeep Raj, Advanced Physical Chemistry, Goel Publishing House, (2014)
3	R. Chang., Basic principles of Spectroscopy, McGraw-Hill Inc.,US (1971).
4	Jag Mohan., Organic Spectroscopy - Principles and Applications, CRC press (2004)
5	D.N. Sathyanarayana., Introduction to Magnetic resonance Spectroscopy, IK International Publishing
	House Pvt. Ltd., (2013)
6	Introduction to MoelcularSpectrsocopy : G.M. Barrow, McGraw Hill (1962)
References	
1	C. N. Banwell and E. M. McCash., Fundamentals of Molecular Spectroscopy, 4th Edn, Tata McGraw Hill, (2010).
2	B.R. Puri, L. R. Sharma, M. S. Pathania., Principles of Physical Chemistry, Vishal Publishing Co. (2016)
3	P. S. Kalsi., Spectroscopy of Organic Compounds, New Age International (2007)
4	NMR, NQR, EPR & Mossbauer Spectroscopy in Inorganic Chemistry : R.V. Parish, Ellis Harwood.
E-References	5
1	nptel.ac.in/courses/103103033/module9/lecture1.pdf
2	http://folk.ntnu.no/fredrol/Nanomaterials%20and%20Nanochemistry.pdf
3	https://www.ceitec.eu/nanoparticles-for-biomedical-applications/f33079
4	https://chem.libretexts.org/

HONER ENDOWERNEN	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.									
Programme	M.Sc	Programme Code			PC	CH	Regulatio	ns	2022-2024	
Department	Cl	hemistry	Semester			: :		4		
Course Code	Course Name		Hours per Week Credit			Credit	Maximum Marks			
			L	Т	Р	С	CA	ES	E Total	
22P3CHE06	ELECTIVE PAPER: Industrial Chemistry					04	25	75	5 100	
Course Objectives	To understand	Fo impart knowledge on fermentation, pigments, oils and fats. Fo understand the industrial applications of chemistry. Fo give an idea for the student about drugs and explosives.								

COs	COURSE OUTCOME
CO 1	Students enable to understand various fermentation processes.
CO 2	Acquire knowledge about different drugs and pharmaceutical aids.
CO 3	Students know about the types of pigments and its use.
CO 4	Students will analyze the applications of enamels, adhesives and explosives.
CO 5	Students enable to understand importance of oils and fats for commercial applications.
Pre-requisites	

	KNOWLEDGE LEVELS (KLs)						
1. Remembering, 2	1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing						
		PSO/ KL Mapping					
(3/2/1 inc	dicates the strength of o	correlation, 3-strong, 2-med	lium, 1-weak)				
COs	KLs	POs	KLs				
CO 1	4	PO 1	2				
CO 2	1	PO 2	1				
CO 3	3	PO 3	5				
CO 4	3	PO 4	5				
CO 5	2	PO 5	4				
PSO 1	3	PO 6	6				
PSO 2	2	PO 7	2				
PSO 3	2	PO 8	3				

	CO / PO Mapping						
	(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)						
COs PO1	COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8						

CO1	1	1	2	2	3	1	1	2
CO2	2	3	1	1	1	1	2	1
CO3	2	1	1	1	2	1	2	3
CO4	1	1	3	3	2	2	1	1
CO5	1	1	2	2	1	3	1	1

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)							
COs	Programme Specific Outcome (POs)							
COS	CO1	CO2	CO3	CO4	CO5			
PSO1	1	3	2	2	1			
PSO2	2	2	1	3	2			
PSO3	2	1 2 1 1						

	Content of the Syllabus								
	Fermentation	Hours	15						
	Introduction - Historical -Conditions favourable for fermentation. Characteristics for								
Unit - I	Unit - I enzymes - short accounts of some fermentation processes – Manufacture of beer –								
	wines and power alcohol. Ethyl alcohol from molasses- Prep	aration of wash	and						
	distillation. Alcohol from waste sulphite liquor- Distillery ef	fluents for							
	Agricultural production.								
Unit - II	Drugs, diagnostic reagents and pharmaceutics aids	Hours	15						
	Drugs: Definition sources of drugs – some important dru	ıgs – aspirin –	phenacetin –						
	paracetamol – penicillin – chlormycetin – structure – prop	erties – uses.							
	Organic diagnostic reagents – definition – uses – sodi	um diatrizoate,	phenol red						
	Evans blue, indigo carmine, methylene blue, xylose, Hista	mine and sodiu	ım benzoate						
	- properties – uses.								
	Organic pharmaceutics aids – Definition – preser	vatives – anti	– antioxidants –						
	flavouring agents - colouring agents - sweetening agents - Emulsifying agents and								
	stabilising agents - examples for each class - uses (str	ucture and prep	paration not						
	necessary)								
	Pigments	Hours	15						
	Definition - composition, characteristics and uses of white pigments - white lead,								
	Zinc oxide Lithopone and TiO ₂ – Blue pigments – Ultra r	narine blue and	l iron blue –						
Unit - III	characteristics - uses. Red pigments - red lead -characteristics and uses. Green								
	pigments – chrome green and Guigwet's green– characteristics and their uses- Black								
	pigments-Natural black oxide, precipitated black iron ox	ide, carbon bla	ack- Yellow						
	pigments- orchre, chrome black.								

	Adhesives, Enamels and Explosives	Hours	15			
	Adhesives: definition – classification of adhesives. Preparati	on and uses of	animal glue –			
Unit - IV	bone glue - protein adhesives - starch adhesives - Synthetic r	esin adhesives.				
	Enamels: Introduction - Raw Materials – Manufacture and A	pplications				
	Explosives: Introduction- Classification - Characteristics	of Explosives.	Preparation			
	and uses of explosives- Nitro cellulose, TNT, Picric acid, 0	Gun Powder and	d Dynamite.			
	Oils and Fats	Hours	15			
	Soaps-Properties, Manufacture of soap. Types- Transparent	Soap, Toilet soa	ap, Powder			
Unit - V	soap and Liquid soap –Ingredients.					
	Detergents-Definition, Properties- Cleansing action - Soapless detergents - Uses of					
	detergents as surfactants. Biodegradability of soaps and detergents.					
	Sugar- Manufacture from sugar cane - Recovery of sugar from	om molasses - T	esting and			
	estimation of sugar.					
	Paper- Manufacture of pulp – Mechanical, Chemical process	s - Sulphate pul	p - Rag pulp.			
	Manufacture of paper.					
	Cement – Types - Raw materials. Manufacture- Wet process- constituent of Cement					
	Properties of cement.					
	Total Hours		75			

Text	Books
1	B.N. Charabarthy - "Industrial Chemistry", 1st Ed., Oxford and IBh Publishing, New
	Delhi.
2	B.K. Sharma – "Industrial Chemistry", 1st Ed., (1983), Goel Publication, Meerut.
3	Arun Bahl and B.S. Bahl – "Text Book of Organic Chemistry", 11th and 18th Ed., S. Chand,
	New Delhi, 2006.
4	Ghosh, Jayashree – "Text Book of Pharmaceutical Chemistry", 3rd Ed., S.Chand& Co.
	Ltd., New Delhi, 1999.
Refe	rences
1	V.P. Gowariker and N.V. Viswanathan - "Polymer Science", 1st Ed., Wiley Easter Pvt.
	Ltd., New Delhi.
2	Lakshmi. S - "Pharmaceutical Chemistry", 3rd Ed., (1995), Sultan Chand & Sons, New
	Delhi.
3	Rajasekaran, VN "Pharmaceutical Chemistry", 1st Ed., (2003), Sun Publications -
	Chennai.
4	Krishnamoorthy, P. Vallinayagan& K. Jaya Subramanian – "Applied Chemistry", 2 nd Ed.,
4	(1999, 2001), Tata MaGraw-HillPublishing Co. Ltd., New Delhi.

E-References					
1	http://www.naturebioscience.com/molasses-fermentation.php				
2	https://digital-photography-school.com/mastering-color-series-color-blue-in-photography				
3	https://www.ilo.org/legacy/english/protection/safework/ghs/ghsfinal/ghsc1528.pdf				

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.

WEWPOWER									
Programme	M.Sc Programme Code				PC	H	Regulatio	ns 2	022-2024
Department	Chemistry			Semester					4
Course Code	Course Name			ours Wee	per ek	Credit	Maxi	mum N	larks
			L	Т	Р	С	CA	ESE	Total
22P4CH09	Core – IX Electrochemistry and Photochemistry					05	25	75	100
Course Objectives	 To impart the basic concepts electrochemistry. To understand the application of electrochemistry and electrochemical cells. To acquire knowledge about electrochemical reactions. To enrich the students' knowledge with the basic principles 						5.		

COs	COURSE OUTCOME
CO 1	Students will understand the basic principles of electrochemistry and different types of
01	electrochemical cells.
CO 2	Students will learn about the basic concepts of photochemistry and their importance in
	various fields.
CO 3	Students will apply their knowledge of photochemistry in the process taking place in
	biosystems.
CO 4	Students will analyze the various electrokinetic processes.
CO 5	Students will evaluate the theories of electrical double layer theories.
Pre-requisites	

	KNOWLE	DGE LEVELS (KLs)							
1. Remembering, 2	1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing								
(3/2/1 inc	CO / PO / PSO/ KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)								
COs	KLs	POs	KLs						
CO 1	4	PO 1	2						
CO 2	1	PO 2	1						
CO 3	3	PO 3	5						
CO 4	3	PO 4	5						
CO 5	2	PO 5	4						
PSO 1	3	PO 6	6						
PSO 2	2	PO 7	2						
PSO 3	2	PO 8	3						

	CO / PO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
COs	COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8										
CO1	1	1	2	2	3	1	1	2			
CO2	2	3	1	1	1	1	2	1			
CO3	2	1	1	1	2	1	2	3			
CO4	1	1	3	3	2	2	1	1			
CO5	1	1	2	2	1	3	1	1			

CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)									
COs	Programme Specific Outcome (POs)								
0.03	CO1	CO2	CO3	CO4	CO5				
PSO1	1	3	2	2	1				
PSO2	2	2	1	3	2				
PSO3	2	1	2	1	1				

	Content of the Syllabus								
	Electro chemistry - I	Hours	15						
Unit - I	Introduction to electrochemical cells-Types-Chemical cells with and without transferences-Concentration cells- types- electrode concentration cells-electrolytic concentration cells - with and without transferences - liquid junction - salt bridge - derivation- Electrical double layer, theories of double layer -Electrokinetic phenomena: Electroosmosis – electrophoresis - Diffusion, Streaming and Sedimentation potentials Dispersion dielectric loss and reractive index – Lennard –								
	jones potential. electro-capillary phenomena, electro-capillary curve.								
	Electro chemistry - II	Hours	15						
Unit - II	Debye - Huckel theory of inter-ionic attraction, ionic atmosphere, time of relaxation, relaxation and - phoretic effects, Derivation of Debye-Huckel-Onsagar equation and its validity for dilute solutions at appreciably concentrated solutions. Debye- Falkenhagen and Wein effects. Mean ionic activity coefficients and their determination. Debye – Huckel Bronsted equations - Derivation of Debye-Huckel limiting law, Quantitative and qualitative verification, ion association and Bjerrum theory -Clausius –mosotti Equation –electrostatic of dielectric medium.								
	Applications of Electrochemistry	Hours	15						

	Photo polymerization: imaging, curing - photodegradate Photoelimination photochemistry of excited redox reaction	_	tabilization-					
	Photochemistry of Aromatic compounds- photochemistr	Photochemistry of Aromatic compounds- photochemistry of carbonyl compounds						
Unit - V	bleach – photochronism - photoimaging - photoc	chemistry of	polymers -					
	Light absorbing compounds -photosensitisers-ultraviolet screening agents - optical							
	chlorofluoro carbons - organic compounds - chemistry of vision – photography -							
	Photochemistry reaction in the atmosphere - oxygen an	d ozone - nitro	ogen oxide -					
	Applied Photochemistry	Hours	15					
	Loeffler Freytag reaction.							
	Cycloaddition reaction of Enones with alkenes. The Hoffmann							
	Photo– Fries rearrangement and photorearrangement of 2,5- Cyclohexadienones.							
	and Trans isomerization - Photoaddition reaction-Paterno-Buchirreaction-Barton reaction							
Unit - IV	Photochemistry of Alkenes, Dienes and Aromatic compounds - Photoisomerisation – Cis							
	Photodimerisation of carbonyl compounds-Intramolecular hydrogen abstraction -							
	 Photoreduction of ketones and enones, Norrish type I and II reactions- 							
	Fundamental concepts - Photooxidation reaction (Formati							
	Organic Photochemistry	Hours	15					
	and detectors-applications.							
	applications.Cyclic voltammetry – principles and application	ns. Electrochem	ical sensors					
	organic polarographic analysis. Anodic stripping voltammet	ry-Principles –						
	polarography- Applications of polarography-Qualitative and	quantitative ar	alysis-					
Unit - 111	polarography-Rapid scan polarography—-pulse polarograph	y – square wav	e					
Unit - III	equation-Polarographic waves-Half wave potential-polarogr	aphic maxima-	AC					
	mercury electrode-Principles of polarography-Instrumentation techniquesthe Ilkovic							
	Polarography- Introduction-Origin of diffusion limiting curr	ent i onunbuo	le Dropping					

Tex	t Books
1	K. K. Rohatgi - Mukharjii, Wiley Eastern., Fundamentals of Photochemistry, New age
1	international., P Ltd., New Delhi 2011
2	S. Glasstone, D. Van Nostrand., An introduction to Electrochemistry., Affiliated East west
2	press Pvt., Ltd., New Delhi, 2004
3	Gurdeep Raj, Advanced Physical Chemistry, Go Publishing House.1999

4	Jagdambasingh, Jaya singh, Photochemisty& Pericyclic Reaction, New age international publishers 2012							
Ref	erences							
1	M.S Yadav Electrochemistry- Anmol Publication Pvt Ltd. New Delhi, 2011							
2	J.G.Calverts&J.N.Pitts - An introduction to Photochemistry, New age international p Ltd., New Delhi. Wells.							
E-R	leferences							
1	http://www.engr.uconn.edu/~jmfent/CHEG320_electrochemistry%20lectures.pdff33079							
2	https://web.stanford.edu/group/burnslab/meetings/13_01_24_QOphotochemistry.pdf							

HOILEN EMPONENIUM	VIVEKA	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.							
Programme	M.Sc	Programme Code			P	СН	Regulati	ons	2022-2024
Department	C	hemistry				Semester			4
Course Code C		urse Name		erio Wo		Credit	Max	imu	n Marks
			L	Т	Р	C	CA	ES	E Total
22P4CHE07	ELECTIVE IN Environmental	LECTIVE IV: nvironmental Chemistry				03	25	75	5 100
Course Objectives	treatment, in	impart knowledge in the field of environment, pollution, water quality, water tment, industrial, agricultural pollutants, water management and acquire wledge on the structure of atmosphere.							•
COs		CO	UR	SE (ΟU	ТСОМЕ			
CO 1	Students wi	ll acquire sound know	ledg	e of	en	vironmental	chemistry		
CO 2	Students lea	arn the importance of	wate	r ma	anag	gement			
CO 3	Students wi	ll acquire knowledge	abou	t po	ollut	tion from ind	ustries		
CO 4	Students wi	Students will acquire knowledge about pollution from agricultural wastes							es
CO 5	Students wi	Students will evaluate the waste management							
Pre-requisites	<u> </u>								

KNOWLEDGE LEVELS (KLs)										
1. Remembering, 2	1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing									
		PSO/ KL Mapping								
(3/2/1 in	dicates the strength of c	correlation, 3-strong, 2-m	edium, 1-weak)							
COs	COs KLs POs KLs									
CO 1	4	PO 1	2							
CO 2	1	PO 2	1							
CO 3	3	PO 3	5							
CO 4	3	PO 4	5							
CO 5	2	PO 5	4							
PSO 1	3	PO 6	6							
PSO 2	2	PO 7	2							
PSO 3	2	PO 8	3							

	CO / PO Mapping										
	(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8			
CO1	1	1	2	2	3	1	1	2			

CO2	2	3	1	1	1	1	2	1
CO3	2	1	1	1	2	1	2	3
CO4	1	1	3	3	2	2	1	1
CO5	1	1	2	2	1	3	1	1

CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
COs		Programme Specific Outcome (POs)								
	CO1	CO2	CO3	CO4	CO5					
PSO1	1	3	2	2	1					
PSO2	2	2	1	3	2					
PSO3	2	1	2	1	1					

	Content of the Syllabus							
	Fundamentals of Environmental Chemistry	Hours	15					
	Concept of environmental chemistry, Composition of atmosp	phere, vertical	temperature					
Unit - I	and vertical structure of the atmosphere. Environmental pollu	tion: Types and	d sources of					
	Pollutants - air, water and soil pollution. Prevention and	d control of p	ollutions					
	Biogeochemical cycles C, N, P, S and O. Biological control	of chemical fa	ctors in the					
	environment.							
	Water Chemistry	Hours	15					
	Characteristics of water, Quality of natural water, quality requirements of portable water,							
	organic, humic and colloidal material in water, chemical composition of water bodies,							
Unit - II	Commercial water purification method- reverse osmosis method-disinfection of water-							
	purification method of water for industrial purpose- lime-soda process, ion exchange							
	process, Zeolite process. Water pollution and its environmental impact, eutrophication,							
	Water quality parameters: pH, conductivity, TDS, DO, BOD	and COD. Ro	le of water in					
	the environment- Hydrological cycle.							
	Atmospheric Pollutants	Hours	15					
	Atmospheric chemistry-Particles, ions and radicals in the	e atmosphere.	Natural and					
	anthropogenic sources of pollution. Primary and Secondar	ry pollutants.	Transport and					
Unit - III	diffusion of pollutants. Oxygen and ozone chemistry. Chemistry of air pollutants,							
	Photochemical smog. Methods of monitoring and control of a	-						
	SPM. Effects of pollutants on human beings, plants, anima	ls and materia	ls. Air quality					
	Standards							

Unit - IV	Soil and sediment geochemistryHours15								
 	Soil and sediment geochemistry-Inorganic and organic comp	onents of soil,	Weathering of						
1	rocks, rock forming minerals, Soil properties, acid-base and i	on-exchange r	eaction in soil						
l	Macro and micronutrients in soil, Nitrogen pathways and NPF	K in soils, Interi	or of the earth						
1	minerals and rocks- earth processes- plate tectonics- sea	floor spread	ng, mountair						
l	building, rock deformation								
<u></u>	Waste Management and Recycling Hours 15								
l	Sources and classification of waste. Waste management - Land filling - Incinerat								
l	Disposal of medicinal waste - New technique to treat inc	lustrial and fa	rm effluents						
T T •4 T 7	Reduce, reuse and recycle - Wealth from waste recycling - Recycling technique - Utili								
Unit - V	Unit - V agricultural waste - Energy Recovery from Waste - Municipal waste into road								
l	Electricity from tannery waste - Vermicomposting - biogas - Plastic recyclin								
l	Waste water and its treatment - primary treatment pre-treatment - s								
l	Flotation, recycling of sewage - Removal of hazardous wastes from contaminated me								
	Total Hours		75						
Text Books									
1 01			0.0						
	arma and Kaur, Environmental Chemistry, Krishna Publishers,								
	ara, S.S., Environmental Pollution and Control, S.Chand& Co.,	New Delhi, Fir	st Edition,						
	93.								
3 S.	S.E Manahan, Environmental Chemistry, Lewis Publishers, London, 2001.								
References									
1 De	e, A.K., Environmental Chemistry, New Age International Pu	ublishers Priva	te Ltd., New						
	elhi, Fifth Edition, 2008.								
	dhi, G.S., Fundamantal Concepts of Environmental Chemistry,	Narosa Publisł	ning House						
	t. Ltd., New Delhi, Third Edition, 2009.								
3 Jac	hav H.V Elements of Environmental Chemistry, Himalaya, (19	92)							
3 Jac	hav H.V Elements of Environmental Chemistry, Himalaya. (19	92)							
3 Jac E-References	hav H.V Elements of Environmental Chemistry, Himalaya. (19	92)							
C-References	hav H.V Elements of Environmental Chemistry, Himalaya. (19 ww.purdueglobal.edu/degree-programs/legal-studies/bachelor-e		oolicy-						
C-References			policy-						

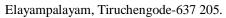
HOLEN EMPORERUEN	VIVEKA	(AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.						ECHTURED BY THE AND A STREET	
Programme	M.Sc	Programme Code PCH Regulations				ons	2020-2022		
Department	C	nemistry Semester			I		4		
Course Code	Co	urse Name	Periods per Week			Credit	edit Maximu		n Marks
			L	Т	Р	С	CA	ES	E Total
22P4CHE08	ELECTIVE IV: Green Chemistry		5			03	25	75	5 100
Course Objectives	2. То р	sign and produce cost- cocesses that attain chy by reducing pollu	the	hig	hest	t level of		ition	-prevention

COs	COURSE OUTCOME
CO 1	Students will acquire sound knowledge of Green chemistry
CO 2	Students learn new beneficialsustainable substances and processes
CO 3	Students will acquire knowledge about pollution from industries
CO 4	Students will acquire knowledge about pollution from agricultural wastes
CO 5	Students will evaluate the waste management
Pre-requisites	

	KNOWLEDGE LEVELS (KLs)							
1. Remembering,	2. Understanding, 3. Ap	oplying, 4. Analyzing, 5. E	valuating, 6. Synthesizing					
(3/2/1 in	CO / PO / PSO/ KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)							
COs	KLs	POs	KLs					
CO 1	4	PO 1	2					
CO 2	1	PO 2	1					
CO 3	3	PO 3	5					
CO 4	3	PO 4	5					
CO 5	2	PO 5	4					
PSO 1	3	PO 6	6					
PSO 2	2	PO 7	2					
PSO 3	2	PO 8	3					

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	1	1	2	2	3	1	1	2
CO2	2	3	1	1	1	1	2	1
CO3	2	1	1	1	2	1	2	3
CO4	1	1	3	3	2	2	1	1
CO5	1	1	2	2	1	3	1	1

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)						
COs		Programme	Specific Outcome	(POs)			
COS	C01	CO2	CO3	CO4	CO5		
PSO1	1	3	2	2	1		
PSO2	2	2	1	3	2		
PSO3	2	1	2	1	1		


	Content of theSyllabus							
	Introductions	Hours	15					
Unit - I	Green chemistry-relevance and goals, Anastas' twelve princip	e	•					
Unit - I	Tools of green chemistry: alternative starting materials, reagen processes with suitable examples.	its, catalysts, so	lvents and					
	Solvent free reactions, Ionic liquids	Hours	15					
Unit - II	Exploration of solvent free reactions – Microwave assisted org	ganic synthesis	_					
	Functional group transformations – Protection and deprotection reactions, Condensation							
	reactions, reduction, oxidation and multi-component reactions.							
	Ionic liquids and PTC Introduction – synthesis of ionic liquids – physical properties –							
	applications in alkylation – hydroformylations – expoxidations – synthesis of ethers –							
	Friedelcraft reactions – Diels-Alder reactions – Knoevengal co	ondensations –	Wittig					
	reactions - Phase transfer catalyst - Synthesis - applications							
	Supported catalysts&Eco-friendly green Techniques	Hours	15					
	Biocatalysts – Modified biocatalysts – Transition metal catalysts – Supported metal							
	catalysts. Eco-friendly synthesis and reactions of unsaturated nitroalkanes. Heterogenized							
Unit - III	reactions - Mineral solid catalysed reactions - Solid supported catalysts -Super critical							
	fluids.A photochemical alternative to Friedel-crafts reactions - Dimethyl carbonate as a							
	methylating agent – the design and applications of green oxida	ints – super crit	ical carbon					
	dioxide for synthetic chemistry.							
Unit - IV	Alternative Treatment Technologies	Hours	15					

Unit - V	Exploration of Green ChemistryHours15Trace element speciation by hyphenated techniques – tools for analytical speciation.Green chemicals – Prospects and future in designing new drugs.				
	Designing of next generation agrochemicals from nature.				

Text Books	
1	Rashmi Sanghi and M.M.Srivastava (Eds.), Green Chemistry – Environment friendly alternatives, Narosa Publishing house, New Delhi, 2003.
2	P.T.Anastas and J.C.Warner, Green Chemistry: Theory and Practice, Oxford Science Publications, Oxford, 1998
3	P.Tundo and P.T.Anastas(Eds.) Green Chemistry: Challenging Perspectives, Oxford University Press, Oxford, 2000
References	
1	P.T.Anastas and T.C.Williamson(Eds.) Green Chemistry: Frontiers in Chemical Synthesis and processes, Oxford University Press, Oxford, 1985.
2	A.S.Matlach, Introduction to Green Chemistry, Marcel Decker Inc New York, 2001
3	Green Chemistry – Environmentally benign reactions – V. K. Ahluwalia. Ane Books India (Publisher). (2006).
4	Green Chemistry – Designing Chemistry for the Environment – edited by Paul T. Anastas& Tracy C. Williamson. Second Edition, (1998).
5	Green Chemistry – Frontiers in benign chemical synthesis and processes- edited by Paul T. Anastas& Tracy C. Williamson. Oxford University Press, (1998).
6	Green Chemistry – Environment friendly alternatives- edited by Rashmi Sanghi& M. M. Srivastava, Narora Publishing House, (2003).

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS)

Programme	M.Sc	Programme Code			PC	H	Regulations		2022-2024	
Department	(Chemistry		Semester			er		4	
Course Code	Ce	ourse Name		ours Wee	per ek	Credit	Ma	ximui	m Marks	
				Т	Р	С	CA	ESH	E Total	
22P4CHP06	Physical Cher Practical	Physical Chemistry Non-Electrical Practical			6	04	40	60	100	
Course Objectives	1. To ap	1. To apply the principles of phase rule, adsorption in the analysis of physical and chemical properties of the given compounds 2. To develop laboratory skills 3. To the ability to work with instruments independently.								

COs	COURSE OUTCOME
CO 1	Students will understand the breadth and concepts of physical chemistry.
CO 2	Construct and explain phase diagram for multi-component system
CO 3	Investigate the mechanism of kinetics of reaction.
CO 4	Students will analyze the possible errors in phase studies.
CO 5	Students will evaluate the adsorption mechanism with time.
Pre-requisites	

1. Remembering, 2		GE LEVELS (KLs) blying, 4. Analyzing, 5. Ev	aluating, 6. Synthesizing			
CO / PO / PSO/ KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)						
COs	KLs	POs	KLs			
CO 1	4	PO 1	2			
CO 2	1	PO 2	1			
CO 3	3	PO 3	5			
CO 4	3	PO 4	5			
CO 5	2	PO 5	4			
PSO 1	3	PO 6	6			
PSO 2	2	PO 7	2			
PSO 3	2	PO 8	3			
L	CO/P	O Mapping				
(3/2/1 in	ndicates the strength of	correlation, 3-strong, 2-m	nedium, 1-			

weak)

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P O
								8
CO1	1	1	2	2	3	1	1	2
CO2	2	3	1	1	1	1	2	1
CO3	2	1	1	1	2	1	2	3
CO4	1	1	3	3	2	2	1	1
CO5	1	1	2	2	1	3	1	1

CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
COs		Programme Specific Outcome (POs)								
COS	C01	CO2	CO3	CO4	CO5					
PSO1	1	3	2	2	1					
PSO2	2	2	1	3	2					
PSO3	2	1	2	1	1					
		•	•	•	•					

Content of the Syllabus							
Non- Electrical Experiments	Hours	75					
1. Phase diagram of a binary system -Simple Eutectic format	ion						
	pound (with co	ngruent					
3. Phase diagram of a three-component liquid system (with one partially miscible pair)							
-							
8. Estimation of KI by partition method.							
9. Primary salt effect (on the kinetics of reaction between S2O82- and I-).							
10. Determination of molecular weight by Rast's micro method.							
Total Hours		75					
_	 Non- Electrical Experiments Phase diagram of a binary system -Simple Eutectic format Phase diagram of a two-component system forming comp melting point). Phase diagram of a three-component liquid system (with (Toluene-Water- Acetic acid). Heat of solution of benzoic acid in water. Verification of Freundlich adsorption isotherm (Adsorp Charcoal). Comparison of strengths of three acids from kinetic stu Determination of E_a and A (for the hydrolysis of ethyl temperatures). Estimation of KI by partition method. Primary salt effect (on the kinetics of reaction between 10. Determination of molecular weight by Rast's micro 	Non- Electrical Experiments Hours 1. Phase diagram of a binary system -Simple Eutectic formation 2. 2. Phase diagram of a two-component system forming compound (with comelting point). 3. 3. Phase diagram of a three-component liquid system (with one partially not component action). 4. 4. Heat of solution of benzoic acid in water. 5. 5. Verification of Freundlich adsorption isotherm (Adsorption of oxalic Charcoal). 6. Comparison of strengths of three acids from kinetic study (Iodination 7. Determination of Ea and A (for the hydrolysis of ethyl acetate at different temperatures). 8. Estimation of KI by partition method. 9. Primary salt effect (on the kinetics of reaction between S2082- and I 10. Determination of molecular weight by Rast's micro method.					

Text	Books and References	
1	P.S. Sindhu, Practicals in Physical Chemistry, 1 st Edition, Macmillan, India (2006).	

2	V. Venkateswaran, R. Veeraswamy and A. R. Kulandaivelu, Basic Principles of Practical Chemistry, New Delhi, S.Chand & Co, (1995).
3	B Viswanathan, P.S. Raghavan, Practical Physical Chemistry, Viva Books Private Limited,
	(2005).
E-Re	eferences
1	https://books.google.co.in/books/about/Practicals_in_Physical_Chemistry.
2	http://www.cffet.net/sia-e/2_Pot_titr.pdf

HONEN ENPOYENTIAL	VIVEKANANDHACOLLEGEOFARTSANDSCIENCESFORWOMEN (AUTONOMOUS) Elayampalayam,Tiruchengode-637205.							ISO 9001.2008 TOVIntendend CERTIFICO	
Programme	M.Sc	Programme Code		PCH Regulations					2022-2024
Department	Chemistry	Chemistry			Semester				
CourseCode	CourseName			Periods per Week Credit			MaximumM		larks
					Р	С	CA	ESE	Total
20P3CHED01		ELECTIVEPAPER: Applied Polymer Chemistry				04	25	75	100
Course Objectives	preparation of impart unders	Coimpart theknowledge inthefieldof polymer chemistry. Toimpart knowledge inthe preparation of syndiotactic, atactic and isotactic polymers using Zeiler-Natta catalyst. To mpart understanding in the field of processing of polymers. To explore the applications of various synthetic polymers.							

COs	COURSEOUTCOME
CO1	Studentsenabletounderstandvariousmethodsofpolymer preparation.
CO2	Acquireknowledgeabouttypesofpolymersandprocessingtechniques.
CO3	StudentsknowMolecularweightdeterminationofpolymers.
CO4	Studentswillanalyzethevariousprocessingofpolymers
CO5	Students enable to understand importance of polymers used for commercial applications.
Pre-requisites	

	KNOWLEDG	ELEVELS	
1.Remember	ing,2.Understanding,3.Applying		.Synthesizing
(3	CO/PO/KL 2/1indicatesthestrengthofcorrela		voak)
(5)			
Cos	KLs	POs	KLs
CO1	2	PO1	2
CO1	2	PO2	1
CO2	1	PO3	5
CO2	1	PO4	5
CO3	5	PO5	4
		PO6	6
004	2	PO7	2
CO4	3	PO8	4
005	2	PO9	1
CO5	2	PO10	3
DCO.	IZI .	PO11	3
PSOs	KLs	PO12	2

	PSO1			3 PO13 1											
	PSO2				4					D14		6			
	PSO3				1	~ ~				015			3		
C	3/2/1ino	licate	sthestr	ength	ofcorrela)/POMa strong.2			veak)					
				8			Outcom								
COs		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO12	PO13	PO14	PO15
CO	1	3	2	1	1	1	1	1	1	2	2	3	2	1	2
CO	2	2	3	1	1	1	1	2	1	3	1	2	3	1	1
CO	3	1	1	3	3	2	2	1	2	1	1	1	1	2	1
CO	4	2	1	1	1	2	1	2	2	1	3	2	1	1	3
CO5 3 2 1 1 1 1 1 2 2					3	2	1	2							
-		(3/2	/1indic	atesth	estrength		elation,		g,2-me		1-weak)				
					Pro	ogramn	ne Speci	ificOut	come (POs)					
	Cos		CO1		CO2	C	03			(CO4			CO5	
Ī	PSC)1	2	2	1		1	3			2				
Ī	PSC)2	1	-	1		2			2			1		
	PSC)3	2	2	3		1			1		2			
-															
-	Course Assessment Methods Direct														
-					1. (ious As 2. 2 EndSem	Assign	ment						

Indirect

1. Course End Delivery

	Content of the Syllabus		
Unit-I	BasicConcepts	Hours	15
	Monomers, Polymers-natural, Semi-synthetic, synthetic degree of		
	polymerization, Linear, branched and network Polymers. Addition		
	polymerization: Condensation Polymerization; Thermoplastic and		

	thermosetting polymers - Elastomers, fibers and resins. Techniques of								
	polymerization - bulk solution, emulsion and suspension.								
	KINETICS AND MECHANISM	Hours	15						
Unit-II	Kinetics and mechanism of polymerization - free radical, cati	onic, anionic	and						
	coordination polymerization (Ziegler-Natta Catalyst). Copolymer	ization - kin	netics						
	(Detailed Study). General characterization-kinetic chain length-degree	of polymeriza	ation,						
	chain transfer - initiators - inhibitors - retarders.								
	MolecularWeight and Properties	Hours	15						
Unit-III	Importance of molecular weight – Average molecular weight -Number average, weight								
	average and viscosity average molecular weights. Measurement of molecular weights-								
	Viscosity, light scattering, osmotic and ultracentrifugation methods.								
	Structure Properties and Analysis	Hours	15						
Unit-IV									
	Structure - property relationship - mechanical properties, thermal proper	rties - glass tra	insitio						
	temperature - factors affecting glass transition temperature - crystallinit	y and melting	point						
	related to structure Crystalline nature - X-Ray diffraction - Differential S	Scanning Calor	rimetr						
	(DSC) - Thermo Gravimetric Analysis.								
	ADVANCES IN POLYMERS	Hours	15						
	Biopolymers - biodegradable polymers - biomedical polymers - poly electrolytes -								
Unit-V	conducting polymers - high temperature and fire retardant polymers	- polymer ble	end -						
	polymer composites - polymer nanocomposites - IPN inter penetrating	g network poly	mers						
	- electroluminescent polymers.	- •							
	Total Hours	75	5						

TextB	TextBooks							
1	1 V.R.Gowariker, N.V.Viswanathanand J.Sreedhar, Polymer Science, New AgeInt., (1986).							
Refer	References							
1	F.W.Billmeyer, TextBook of Polymer Science, 3rd Edition, J. Wiley, (2003).							
2	H.R.AlcockandF.W.Lamber, ContemporaryPolymerChemistry, PrenticeHall, (1981).							

3	P.J.Flory, Principles of Polymer Chemistry, Cornell University press, New York, (1953).							
4	G.Odian, Principles of Polymerization, 2nd Edition, John Wiley & Sons, New York, (1981).							
5	Roy W. TessGary W. Poehlein , Applied Polymer Science, American Chemical Society, Volume 285, 2021.							
E-Ref	ferences							
1	http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch8/vsepr.htm							
2	https://chem.libretexts.org							
3	http://www.chem.iitb.ac.in/people/Faculty/prof/pdfs/L5.pdf							

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.

EMPOWE										
Programme	M.Sc	Programme Code		РСН			Regulat s	ion	20	22-2024
Department	Ch	emistry				Semester				3
Course Code	Course Name		Periods per Week			Credit	Maximun		n N	/larks
				Т	Р	С	CA	ES	E	Total
22P3CHED02	EDC: DAIRY CHEMISTRY					03	25	75	5	100
Course Objectives	lipids in the qual To impart knowl	sic knowledge on all asp ity of milk products as v edge on different aspect hysico-chemical change	vell as s of n	s in h ilk p	uma prote	an health. eins.		-		

COs	COURSE OUTCOME						
CO 1	Students will be known to the composition of lipids in milk.						
CO 2	tudents can able to understand the chemical properties and secondary products of milk.						
CO 3	Students can able to understand the isolation of proteins in milk.						
CO 4	Knowledge of students will be enriched with knowing the physico-chemical properties of milk proteins.						
CO 5	Students will systematically learn about the chemistry of milk products.						
Pre-							
requisites							

	KNOWLEDGE LEVELS										
1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing											
(3)	CO / PO / KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
Cos	KLs	POs	KLs								
CO 1	4	PO 1	2								
		PO 2	1								
CO 2	1	PO 3	5								
02	1	PO 4	5								
CO 3	3	PO 5	4								
CO 3	3	PO 6	6								
CO 4	5	PO 7	2								
0.04	5	PO 8	4								

CO 5					6			PO 9 1							
	55				6				PO 1	0		3			
DGO					171				PO 1	1			3		
PSOs					KLs			PO 12					2		
PS	01				3				PO 1	3			1		
PS	O 2				4			PO 14			2				
PS	O 3				1			PO 15				1			
			•			CO /	PO M	apping	5		•				
	-	(3/2)	/1 indi	cates the	e strenş	gth of c	orrela	tion, 3	strong	g, 2-me	dium, 1	1-weak)		
COs		-				Pro	gramn	ne Out	come ((POs)	-	-	-	-	-
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2
CO2	2	3	1	1	1	1	2	1	3	1	1	2	3	1	1
CO3	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3
CO4	1	1	3	3	2	2	1	2	1	1	1	1	1	2	1
CO5	1	1	2	2	1	3	1	1	1	1	1	1	1	3	1

(3,	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)									
Programme Specific Outcome(POs)										
Cos	CO1	CO2	CO3	CO4	CO5					
PSO1	1	3	2	2	1					
PSO2	2	2	1	3	2					
PSO3	2	1	2	1	1					

Course Assessment Methods							
Direct							
1. Continuous Assessment Test I, II & Model							
2. Assignment							
3. End Semester Examinations							
Indirect							
1. Course End Delivery							

Content of the Syllabus									
	Composition of Milk	Periods	15						
	Milk-definition-general composition of milk- constituents of milk - lipids, proteins,								
Unit - I	carbohydrates, vitamins and minerals - physical properties of milk -colour, odour, acidity,								
	specific gravity, viscosity and conductivity - Factors affecting the composition of milk -								
	adulterants, preservatives with neutralizer examples and their detection- estimation of fat,								

	acidity and total solids in milk.								
	Processing of Milk	Periods	15						
	Microbiology of milk - destruction of micro - organis	sms in milk, physic	o –chemical						
Unit - II	changes taking place in milk due to processing - boil	ling,pasteurization -	- types of						
	pasteurization - Bottle, Batch and HTST (HighTemp	erature Short Time) – Vacuum						
	pasteurization – Ultra High Temperature Pasteurizati	ion.							
	Major Milk products	Periods	15						
	Cream - definition - composition - chemistry of crean	ming process - grav	ritational and						
	centrifugal methods of separation of cream - estimati	ion of fat in cream.	Butter - definition						
Unit - III	composition - theory of churning – desi butter - salter	d butter, estimation	of acidity and						
	moisture content in butter. Ghee – major constituents	s - common adulter	ants added to ghee						
	and their detection – rancidity - definition - prevention	and their detection – rancidity - definition - prevention - antioxidants and synergists -							
	natural and synthetic.								
	Special Milk	Periods	15						
	Standardised milk - definition - merits - reconstituted milk - definition – flow diagram of								
Unit - IV	manufacture - Homogenised milk - flavoured milk - vitaminised milk - toned milk -								
	Incitation milk - Vegetable toned milk - humanized milk -condensed milk - definition,								
	composition and nutritive value.								
	Fermented and other Milk Products	Periods	15						
	Fermented milk products – fermentation of milk - de	finition, conditions	, cultured milk -						
	definition of culture - example, conditions - cultured cream, butter milk - Bulgarious milk -								
Unit - V	acidophilous milk – Yoheer Indigeneous products- khoa and chhena definition - Ice cream								
	-definition-percentage composition-types-ingredients-manufacture of ice-cream,								
	stabilizers - emulsifiers and theirrole-milk powder-definition need for making milk powder								
	dryingprocess-types of drying.								
	Total Periods		75						
Text Books									
1 Mat	thur MP, Datta Roy D & Dinakar P. 2008. Text Book of Dairy	y Chemistry. ICAR.							
2 Tex	t book of dairy chemistry, P. L. Choudhary, Bio-G	reen book publisl	ners, 2021						
3 K. I	Bagavathi Sundari, Applied Chemistry, MJP Publis	shers, first editior	n, 2006.						
	S. Rangappa and K.T. Acharya, Indian Dairy Produ Ihi, 1974.	ucts, Asia Publish	ing House New						
De									
Del References									
References1Rot	pert Jenness and S. Patom, Principles of Dairy Che								
References	pert Jenness and S. Patom, Principles of Dairy Che Fox and P.L.H. Mcsweeney, Dairy Chemistry and E								

https://dairypro	cessinghandb	ook.tetrapak.co	m/chapter/ch	emistry-milk
			· · · · · · · · · · · · · · · · · · ·	

1

HONEN EMPOWERNEN	VIVEKANANI	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.								
Programme	M.Sc	Programme Code		PCH Regulations					2022-2024	
Department	Chemistry			Semester					4	
Course Code	Course Name		Hours per Week			Credit	Maximum Mark		n Marks	
			L	Т	Р	С	CA ES	ESI	E Total	
22P4CHPR01	PROJECT			5		05	40	60) 100	
Course . To inculcate the habit of literature survey among the students. Objectives . To offer skill based knowledge to the students. . To facilitate the students towards basic research and development.										